
CSE 312

Foundations of Computing II

Lecture 13: Poisson wrap-up
Continuous RV
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Announcements

• PSet 4 due today

• PSet 3 returned yesterday

• Midterm general info is posted on Ed 

– In your section.  Closed book . No electronic aids.  

• Practice midterm is posted

– Has format you will see, including 2-page “cheat sheet”.

– Other practice materials linked also

• Midterm Q&A session next Tuesday 4pm on Zoom 
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Agenda

• Wrap-up of Poisson RVs

• Continuous Random Variables

• Probability Density Function 

• Cumulative Distribution Function
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Often we want to model experiments where the outcome is 
not discrete.
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General principle: 
• Events happen at an average rate 

of � per time unit 
• Disjoint time intervals independent
• Number of events happening at a 

time unit � is distributed according 
to Poi(�) 

Definition. A Poisson random variable � with parameter � ≥ 0 is such 
that for all � = 0,1,2,3 …,


 � = � = ��� ⋅ ��
�!  

• Poisson approximates Binomial when � is large, � is small, and �� is moderate
• Sum of independent Poisson is still a Poisson

Poisson Random Variables



Sum of Independent Poisson RVs 
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Theorem. Let �~Poi(��) and �~Poi(��) such that � = �� + ��. 

Let ! = � + �.    For all " = 0,1,2,3 …,


 ! = " = ��� ⋅ �#
$!  

More generally, let ��~Poi �� , ⋯ , �&~Poi(�&) such that � = Σ���. 

Let ! = Σ���

 ! = " = ��� ⋅ �#

$!  



Sum of Independent Poisson RVs 
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Theorem. Let �~Poi(��) and �~Poi(��) such that � = �� + ��. 

Let ! = � + �. For all " = 0,1,2,3 …,


 ! = " = ��� ⋅ �#
$!  


 ! = " = ? 
1.  
 ! = " = Σ*+,$  
 � = -, � = " − -
2.  
 ! = " = Σ*+,/ 
 � = -, � = " − -
3.  
 ! = " = Σ*+,$ 
 � = " − -|� = -  
(� = -)
4. 
 ! = " = Σ*+,$ 
 � = " − -|� = -

pollev.com/paulbeame028

A. All of them are right 
B. The first 3 are right 
C. Only 1 is right
D. Don’t know 



Proof
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 ! = " = Σ*+,1 
 � = -, � = " − -
= Σ*+,1 
 � = -) 
(� = " − - = Σ*+,1   ���2 ⋅ ��*-! ⋅ ���3 ⋅ ��$�*

" − -!
= ���2��3  Σ*+,1  ⋅ 1

-! " − -! ⋅ ��* ��$�*

= ���  Σ*+,1  "!
-! " − -! ⋅ ��* ��$�* 1

"!
= ��� ⋅ �� + �� $ ⋅ �

$! = ��� ⋅ �$ ⋅ �
$!

Law of total probability

Independence

Binomial 
Theorem



Don’t be fooled by this picture:  Poisson RVs are discrete
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� = 5
� = 5

&
� = 10,15,20

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 1 3 5 7 9 11 13 15

Bin(10,0.5)
Bin(15,1/3)

Bin(20,0.25)

Poi(5)

9: � → ∞, Binomial(n,   � =  �/�) → �=�(�)

Only integer values 
occur for both 
binomial and Poisson



Agenda

• Wrap-up of Poisson RVs

• Continuous Random Variables

• Probability Density Function 

• Cumulative Distribution Function
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Often we want to model experiments where the outcome is 
not discrete.



Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

•  > = time of lightning strike

• Every time within [0,1] is equally likely

– Time measured with infinitesimal precision.
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0 1> = 0.71237131931129576 …

The outcome space is not discrete
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Lightning strikes a pole within a one-minute time frame

•  > = time of lightning strike

• Every point in time within [0,1] is equally likely

0 10.5

½
 > ≥ 0.5 =
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Lightning strikes a pole within a one-minute time frame

•  > = time of lightning strike

• Every point in time within [0,1] is equally likely


 0.2 C > C 0.5 =

0 10.5

0.5 . 0.2 = 0.3

0.2
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Lightning strikes a pole within a one-minute time frame

• > = time of lightning strike

• Every point in time within [0,1] is equally likely


 > = 0.5 =

0 10.5

0



Bottom line

• This gives rise to a different type of random variable

•  
 > = D = 0 for all D ∈ [0,1]

• Yet, somehow we want

–  
 > ∈ [0,1] = 1

– 
 > ∈ [9, H] = H . 9

– …

• How do we model the behavior of >?
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First try:  A discrete approximation



Recall:  Cumulative Distribution Function (CDF)
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JI

Cumulative Distribution Function
CDF

�I

Probability Mass Function
PMF

A Discrete Approximation



Definition. A continuous random variable � is defined by a 
probability density function (PDF) PI: ℝ → ℝ, such that 
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Non-negativity: PI D ≥ 0 for all D ∈ ℝ
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Probability Density Function - Intuition

Non-negativity: PI D ≥ 0 for all D ∈ ℝ
Normalization: S PI D  dDU/

�/ = 1
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Probability Density Function - Intuition

Non-negativity: PI D ≥ 0 for all D ∈ ℝ
Normalization: S PI D  dDU/�/ � 1


 9 C � C H � V PI D  dDW
X
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Probability Density Function - Intuition

Y

Non-negativity: PI D � 0 for all D ∈ ℝ
Normalization: S PI D  dDU/�/ � 1


 9 C � C H � V PI D  dDW
X


 � � Y � 
 Y C � C Y � V PI D  dDZ
Z � 0

Density [ ProbabilityPI Y [ 0 
 � � Y � 0
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Probability Density Function - Intuition

YY − \2 Y + \2

Non-negativity: PI D � 0 for all D ∈ ℝ
Normalization: S PI D  dDU/

�/ = 1

 9 ≤ � ≤ H = V PI D  dDW

X


 � = Y = 
 Y ≤ � ≤ Y = V PI D  dDZ
Z

= 0


 � ≈ Y ≈ 
 Y − \
2 ≤ � ≤ Y + \

2 = V PI D  dDZU�̂
Z��̂

≈ \PI(Y)

What PI(D) measures: The local rate at which probability accumulates 




 � ≈ Y

 � ≈ " ≈ \PI Y

\PI " = PI Y
PI " 22

Probability Density Function - Intuition


 � ≈ Y

 � ≈ " = 2

Y "

Non-negativity: PI D � 0 for all D ∈ ℝ
Normalization: S PI D  dDU/

�/ = 1

 9 ≤ � ≤ H = V PI D  dDW

X


 � = Y = 
 Y ≤ � ≤ Y = V PI D  dDZ
Z

= 0


 � ≈ Y ≈ 
 Y − \
2 ≤ � ≤ Y + \

2 = V PI D  dDZU�̂
Z��̂

≈ \PI(Y)



Definition. A continuous random variable � is defined by a 
probability density function (PDF) PI: ℝ → ℝ, such that
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Non-negativity: PI D � 0 for all D ∈ ℝ
Normalization: S PI D  dDU/

�/ = 1

 9 ≤ � ≤ H = V PI D  dDW

X

 � = Y = 
 Y ≤ � ≤ Y = V PI D  dDZ

Z
= 0


 � ≈ Y ≈ 
 Y − \
2 ≤ � ≤ Y + \

2 = V PI D  dDZU�̂
Z��̂

≈ \PI(Y)

 � ≈ Y

 � ≈ " ≈ \PI Y

\PI " = PI Y
PI "
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PDF of Uniform RV
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PI D = _1, D ∈ [0,1] 0, D ∉ [0,1]

V PI D  dDU/
�/

= V PI D  dD�
,

= 1 ⋅ 1 = 1

0

1

� ∼ Unif(0,1) Non-negativity: PI D � 0 for all D ∈ ℝ
Normalization: S PI D  dDU/

�/ = 1



Probability of Event
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0

1

� ∼ Unif(0,1)

9 H

PI D = _1, D ∈ [0,1] 0, D ∉ [0,1]

Non-negativity: PI D � 0 for all D ∈ ℝ
Normalization: S PI D  dDU/

�/ = 1

 9 ≤ � ≤ H = V PI D  dDW

X
1. If 0 ≤ 9 and 9 ≤ H ≤ 1
 9 ≤ � ≤ H = H − 9
2. If 9 < 0 and 0 ≤ H ≤ 1
 9 ≤ � ≤ H = H        
3. If 9 ≥ 0 and H > 1
 9 ≤ � ≤ H = H − 9
4. If 9 < 0 and H > 1
 9 ≤ � ≤ H = 1        

Poll: pollev/paulbeame028

A. All of them are correct
B. Only 1, 2, 4 are right 
C. Only 1 is right 
D. Only 1 and 2 are right 



Probability of Event
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0

1

� ∼ Unif(0,1)
PI D = _1, D ∈ [0,1] 0, D ∉ [0,1]

Non-negativity: PI D � 0 for all D ∈ ℝ
Normalization: S PI D  dDU/

�/ = 1

 9 ≤ � ≤ H = V PI D  dDW

X


 � = Y = 
 Y ≤ � ≤ Y = V PI D  dDZ
Z

= 0

 � ≈ Y ≈ \PI Y = \

 � ≈ Y

 � ≈ " ≈ \PI Y

\PI " = PI Y
PI "



PDF of Uniform RV
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PI D = _2, D ∈ F0,0.5G
 0, D ∉ F0,0.5G

V PI D  dD
U/

�/
= V PI D  dD

�

,
= 2 ⋅ 0.5 = 1

0

2

� ∼ Unif�0,0.5�

Density [ Probability

1

0.5

PI D ≫ 1 is possible!

Probability on F0,0.5G accumulates at 
twice the rate compared to Unif�0,1�



Uniform Distribution

29

PI D � h 1H − 9 D ∈ [9, HG0 else

V PI D  dDU/
�/

= H − 9 1H − 9 � 1

0

1H − 9

� ∼ Unif�9, H�

9 H
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10

Pl D � _1, D ∈ [0,1G 0, D ∉ F0,1G

0

1

Example. > ∼ Unif�0,1�

10
0

Jl D � 
�> C D� � h0 D C 0? 0 C D C 11 1 C D

Probability Density Function

Cumulative Distribution Function 

1

D

D
D



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of � is JI 9 � 
 � C 9 � S PI D  dDX
�/
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Therefore: 
 � ∈ [9, HG � JI H − JI�9�
By the fundamental theorem of Calculus PI D � mmn JI�D�

JI is monotone increasing, since PI D � 0. That is JI o C JI p for o C p
limX→�/ JI 9 � 
 � C −∞ � 0 limX→U/ JI 9 � 
 � C +∞ � 1



From Discrete to Continuous

Discrete Continuous

PMF/PDF �I D � 
 � � D PI D [ 
 � � D � 0
CDF  JI D = r �I(s)

t

u v n
JI D = V PI s  psn

�/
Normalization r �I D � 1

t

n
V PI D  pD = 1/

�/
Expectation w x � � r x D  �I(D)

t

n
w x � = V x D  PI D  pD/

�/


