
CSE 312

Foundations of Computing II

Lecture 11: Bloom Filters continued,
Zoo of Discrete RVs, part I
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Review Variance – Properties 

2

Definition. The variance of a (discrete) RV � is
Var � = � � − �[�] � = ∑ 
� � ⋅ � − �[�] ���

Theorem. Var � = �[��] − �[�]�

Theorem. For any �, � ∈ ℝ, Var � ⋅ � + � = �� ⋅ Var �



Review Important Facts about Independent Random Variables
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Theorem. If �, � independent, �[� ⋅ �] = �[�] ⋅ �[�]

Theorem. If �, � independent, Var � + � = Var � + Var �

Corollary. If ��, ��, …, �� mutually independent, 

Var � ��
�

���
= � Var(��)

�

�



Agenda

• Bloom Filters Example & Analysis

• Zoo of Discrete RVs

– Uniform Random Variables

– Bernoulli Random Variables

– Binomial Random Variables

– Applications
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Basic Problem
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Problem: Store a subset ! of a large set ".

Example. " = set of 128 bit strings
! = subset of strings of interest

" ≈ 2128

! ≈ 1000

Two goals: 

1. Very fast (ideally constant time) answers to queries “Is � ∈ !?” 
for any � ∈ ".

2. Minimal storage requirements.



Bloom Filters

to the rescue
(Named after Burton Howard Bloom)

This Photo by Unknown Author is licensed under CC BY-NC-ND



Bloom Filters

• Stores information about a set of elements ! ⊆ ".

• Supports two operations:

1. add(�) - adds � ∈ " to the set !
2. contains(�) – ideally: true if � ∈ !, false otherwise
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Possible false positives
Combine with fallback mechanism – can distinguish false 

positives from true positives with extra cost



Bloom Filters – Ingredients 
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Basic data structure is a & × ( binary array 
“the Bloom filter”

• & rows )�, … , )+, each of size (
• Think of each row as an (-bit vector

& different hash functions ,�, … , ,+: " → [(]

t1 1 0 1 0 0

t2 0 1 0 0 1

t3 1 0 0 1 0



Bloom Filters – Three operations

• Set up Bloom filter for ! = ∅

• Update Bloom filter for  ! ← ! ∪ {�}

• Check if � ∈ !
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function INITIALIZE(&, ()
for 4 = 1, … , &: do

)� = new bit vector of ( 0s

function ADD(�)
for 4 = 1, … , &: do

)�[ℎ� � ] = 1

function CONTAINS(�)
return )� ℎ� � == 1 ∧ )� ℎ� � == 1 ∧ ⋯ ∧ )+ ℎ+ � == 1



function INITIALIZE(&, ()
for 4 = 1, … , &: do

)� = new bit vector of ( 0s

Size of array 

associated to 

each hash 

function. 

Number of 

hash 

functions

for each hash 

function, initialize 

an empty bit 

vector of size (

Bloom Filters - Initialization



Index 

→ 

0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom Filters: Example

function INITIALIZE(&, ()
for 4 = 1, … , &: do

)� = new bit vector of ( 0s

Bloom filter : of length ; = 5 that uses < = 3 hash functions



function ADD(�)
for 4 = 1, … , &: do

)�[ℎ� � ] = 1
for each hash 

function ,4

Index into 4-th bit-vector, at index produced 

by hash function and set to 1

,4(�) → result of hash 

function ,4 on �

Bloom Filters: Add



Bloom filter t of length ; = 5 that uses < = 3 hash functions

Bloom Filters: Example

function ADD(�)
for 4 = 1, … , &: do

)�[ℎ� � ] = 1
Index 

→ 

0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

add(“thisisavirus.com”)

ℎ1(“thisisavirus.com”) → 2 



Bloom Filters: Example

function ADD(�)
for 4 = 1, … , &: do

)�[ℎ� � ] = 1
Index 

→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom filter t of length ; = 5 that uses < = 3 hash functions

ℎ2(“thisisavirus.com”) → 1 

ℎ1(“thisisavirus.com”) → 2 

add(“thisisavirus.com”)



add(“thisisavirus.com”)

ℎ2(“thisisavirus.com”) → 1 

ℎ3(“thisisavirus.com”) → 4 

Bloom Filters: Example

function ADD(�)
for 4 = 1, … , &: do

)�[ℎ� � ] = 1
Index 

→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 0

ℎ1(“thisisavirus.com”) → 2 

Bloom filter t of length ; = 5 that uses < = 3 hash functions



Bloom filter t of length ; = 5 that uses < = 3 hash functions

Bloom Filters: Example

function ADD(�)
for 4 = 1, … , &: do

)�[ℎ� � ] = 1
Index 

→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

add(“thisisavirus.com”)

ℎ2(“thisisavirus.com”) → 1 

ℎ1(“thisisavirus.com”) → 2 

ℎ3(“thisisavirus.com”) → 4 



Returns True if the bit vector )4 for each hash function has bit 1 at 

index determined by ℎ4(�), 

Returns False otherwise

Bloom Filters: Contains

function CONTAINS(�)
return )� ℎ� � == 1 ∧ )� ℎ� � == 1 ∧ ⋯ ∧ )+ ℎ+ � == 1



contains(“thisisavirus.com”)

Bloom Filters: Example

function CONTAINS(�)
return )� ℎ� � == 1 ∧ )� ℎ� � == 1 ∧ ⋯ ∧ )+ ℎ+ � == 1

Index 

→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length ; = 5 that uses < = 3 hash functions



contains(“thisisavirus.com”)

True

Bloom Filters: Example

function CONTAINS(�)
return )� ℎ� � == 1 ∧ )� ℎ� � == 1 ∧ ⋯ ∧ )+ ℎ+ � == 1

Index 

→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length ; = 5 that uses < = 3 hash functions

ℎ1(“thisisavirus.com”) → 2 



contains(“thisisavirus.com”)

TrueTrue

Bloom Filters: Example

function CONTAINS(�)
return )� ℎ� � == 1 ∧ )� ℎ� � == 1 ∧ ⋯ ∧ )+ ℎ+ � == 1

Index 

→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length ; = 5 that uses < = 3 hash functions

ℎ2(“thisisavirus.com”) → 1 

ℎ1(“thisisavirus.com”) → 2 



contains(“thisisavirus.com”)

TrueTrueTrue

Bloom Filters: Example

function CONTAINS(�)
return )� ℎ� � == 1 ∧ )� ℎ� � == 1 ∧ ⋯ ∧ )+ ℎ+ � == 1

Index 

→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length ; = 5 that uses < = 3 hash functions

ℎ2(“thisisavirus.com”) → 1 

ℎ1(“thisisavirus.com”) → 2 

ℎ3(“thisisavirus.com”) → 4 



contains(“thisisavirus.com”)

TrueTrueTrue

Bloom Filters: Example

function CONTAINS(�)
return )� ℎ� � == 1 ∧ )� ℎ� � == 1 ∧ ⋯ ∧ )+ ℎ+ � == 1

Index 

→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Since all conditions satisfied, returns True (correctly)

Bloom filter t of length ; = 5 that uses < = 3 hash functions

ℎ2(“thisisavirus.com”) → 1 

ℎ1(“thisisavirus.com”) → 2 

ℎ3(“thisisavirus.com”) → 4 



Index 

→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(�)
for 4 = 1, … , &: do

)�[ℎ� � ] = 1

Bloom filter t of length ; = 5 that uses < = 3 hash functions

add(“totallynotsuspicious.com”)



Index 

→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(�)
for 4 = 1, … , &: do

)�[ℎ� � ] = 1

Bloom filter t of length ; = 5 that uses < = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ1(“totallynotsuspicious.com”) → 1 



Index 

→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(�)
for 4 = 1, … , &: do

)�[ℎ� � ] = 1

Bloom filter t of length ; = 5 that uses < = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 0 

ℎ1(“totallynotsuspicious.com”) → 1 



Index 

→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(�)
for 4 = 1, … , &: do

)�[ℎ� � ] = 1

Bloom filter t of length ; = 5 that uses < = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 0 

ℎ1(“totallynotsuspicious.com”) → 1 

ℎ3(“totallynotsuspicious.com”) → 4 



Index 

→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(�)
for 4 = 1, … , &: do

)�[ℎ� � ] = 1

Bloom filter t of length ; = 5 that uses < = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 0 

ℎ1(“totallynotsuspicious.com”) → 1 

ℎ3(“totallynotsuspicious.com”) → 4 



Index 

→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

Bloom Filters: False Positives

function CONTAINS(�)
return )� ℎ� � == 1 ∧ )� ℎ� � == 1 ∧ ⋯ ∧ )+ ℎ+ � == 1

Bloom filter t of length ; = 5 that uses < = 3 hash functions



Index 

→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

True

Bloom Filters: False Positives

function CONTAINS(�)
return )� ℎ� � == 1 ∧ )� ℎ� � == 1 ∧ ⋯ ∧ )+ ℎ+ � == 1

Bloom filter t of length ; = 5 that uses < = 3 hash functions

ℎ1(“verynormalsite.com”) → 2 



Index 

→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrue

Bloom Filters: False Positives

function CONTAINS(�)
return )� ℎ� � == 1 ∧ )� ℎ� � == 1 ∧ ⋯ ∧ )+ ℎ+ � == 1

Bloom filter t of length ; = 5 that uses < = 3 hash functions

ℎ2(“verynormalsite.com”) → 0 

ℎ1(“verynormalsite.com”) → 2 



Index 

→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrueTrue

Bloom Filters: False Positives

function CONTAINS(�)
return )� ℎ� � == 1 ∧ )� ℎ� � == 1 ∧ ⋯ ∧ )+ ℎ+ � == 1

Bloom filter t of length ; = 5 that uses < = 3 hash functions

ℎ2(“verynormalsite.com”) → 0 

ℎ1(“verynormalsite.com”) → 2 

ℎ3(“verynormalsite.com”) → 4 



Index 

→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrueTrue

Bloom Filters: False Positives

function CONTAINS(�)
return )� ℎ� � == 1 ∧ )� ℎ� � == 1 ∧ ⋯ ∧ )+ ℎ+ � == 1

Since all conditions satisfied, returns True (incorrectly)

Bloom filter t of length ; = 5 that uses < = 3 hash functions

ℎ2(“verynormalsite.com”) → 0 

ℎ1(“verynormalsite.com”) → 2 

ℎ3(“verynormalsite.com”) → 4 



Analysis: False positive probability

Question: For an element � ∈ ", what is the probability that 
contains(�) returns true if add(�) was never executed before? 

Probability over what?!        

Assumptions for the analysis (somewhat stronger than for ordinary 
hashing):
• Each ,� � is uniformly distributed in [(] for all � and 4
• Hash function outputs for each ,�are mutually independent (not 

just in pairs)
• Different hash functions are independent of each other

Over the choice of the ?�, … , ?+



False positive probability – Events 

34

Assume we perform add �� , … ,add ��
+ contains(�) for � ∉ {��, … , ��}

Event A� holds iff ,� � ∈ {,� �� , … , ,� �� }

B false positive = B A� ∩ A� ∩ ⋯ ∩ A+ = M B(A�)
+

���

,�, … , ,+ independent 



False positive probability – Events 

35

Event A� holds iff ,� � ∈ {,� �� , … , ,� �� }

B A�N = � B ,� � = O ⋅ B A�N  ,� � = z)
Q

R��

Event A�N holds iff ,� � ≠ ,� �� and … and ,� � ≠ ,� ��

LTP



False positive probability – Events 

36

B A�N  ,� � = O =

Event A�N holds iff ,� � ≠ ,� �� and … 
and ,� � ≠ ,� ��

B ,� �� ≠ O, … , ,� �� ≠ O | ,� � = O

= M B ,� �U ≠ O
�

U��

= M 1 − 1
(

�

U��
= 1 − 1

(
�

B A�N = � B ,� � = O ⋅ B A�N  ,� � = z)
Q

R��
= 1 − 1

(
�

=  B ,� �� ≠ O, … , ,� �� ≠ O Independence of values 
of ?� on different inputs

Outputs of ?� uniformly spread



False positive probability – Events 

37

Event A� holds iff ,� � ∈ {,� �� , … , ,� �� }
Event A�N holds iff ,� � ≠ ,� �� and … and ,� � ≠ ,� ��

B A�N = 1 − 1
(

�

FPR = M 1 − B A�N
+

���
= 1 − 1 − 1

(
� +



False Positivity Rate – Example 

38

FPR = 1 − 1 − 1
(

� +

e.g., Y = 5,000,000
& = 30
( = 2,500,000

FPR = 1.28%



Comparison with Hash Tables - Space

Hash Table Bloom Filter

● Google storing 5 million URLs, each URL 40 bytes.

● Bloom filter with & =  30 and ( =  2,500,000

(optimistic) 
5,000,000 × 40\ = 200MB 

2,500,000 × 30 = 75,000,000 bits 

< 10 MB 



Time

● Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.

● 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.

● Suppose the false positive rate is 3%

100000 × 0.03 × 500ms1ms +
+2000 × 500 ms

102000 ≈  25.51ms 

Bloom filter lookup

malicious URLs

0.5 seconds DB lookup
false positives

total URLs



Bloom Filters typical of….

… randomized algorithms and randomized data structures.

• Simple

• Fast

• Efficient

• Elegant

• Useful!

41



Brain Break

42



Motivation for “Named” Random Variables

Random Variables that show up all over the place. 

– Easily solve a problem by recognizing it’s a special case of one of 
these random variables.

Each RV introduced today will show:

– A general situation it models

– Its name and parameters

– Its PMF, Expectation, and Variance

– Example scenarios you can use it

43



Welcome to the Zoo! (Preview) � ���� ��

44

� ∼ Unif(�, �)

B � = & = 1
� − � + 1

� � = � + �
2

Var � = (� − �)(� − � + 2)
12  

� ∼ NegBin(g, 
)

B � = & = & − 1
g − 1 
h 1 − 
 +ih

� � = g



Var � = g(1 − 
)

�

� ∼ HypGeo(m, n, Y)

B � = & =
o
+

pio
�i+

p
�

� � = Y n
m

Var � = Y n(m − n)(m − Y)
m�(m − 1)

� ∼ Bin(Y, 
)

B � = & = Y
& 
+ 1 − 
 �i+

� � = Y

Var � = Y
(1 − 
)

� ∼ Ber(
)

B � = 1 = 
, B � = 0 = 1 − 


� � = 


Var � = 
(1 − 
) 

� ∼ Geo(
)

B � = & = 1 − 
 +i�

� � = 1



Var � = 1 − 



�



Agenda

• Bloom Filters Example & Analysis

• Zoo of Discrete RVs, Part I

– Uniform Random Variables

– Bernoulli Random Variables

– Binomial Random Variables

– Applications
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Discrete Uniform Random Variables

A discrete random variable � equally likely to take any (integer) value 
between integers � and � (inclusive), is uniform.

Notation:

PMF:

Expectation:

Variance:

46

Example: value shown on one 
roll of a fair die



Discrete Uniform Random Variables

A discrete random variable � equally likely to take any (integer) value 
between integers � and � (inclusive), is uniform.

Notation: � ∼ Unif(�, �)
PMF: P � = 4 = �

q irs�
Expectation: � � = rsq

�
Variance: Var(�) = (qir)(q irs�)

��

47

Example: value shown on one 
roll of a fair die is Unif(1,6):

• B(� = 4) = 1/6
•  � � = 7/2
• Var � = 35/12



Agenda

• Bloom Filters Example & Analysis

• Zoo of Discrete RVs, Part I

– Uniform Random Variables

– Bernoulli Random Variables

– Binomial Random Variables

– Applications

48



Bernoulli Random Variables

A random variable � that takes value 1 (“Success”) with probability 
, 
and 0 (“Failure”) otherwise. � is called a Bernoulli random variable.

Notation: � ∼ Ber(
)
PMF: B � = 1 = 
,  B � = 0 = 1 − 

Expectation: 

Variance:

49

Poll: 
pollev.com/paulbeame028

Mean Variance
A. 
 

B. 
 1 − 

C. 
 
(1 − 
)
D.  
 
�



Bernoulli Random Variables

A random variable � that takes value 1 (“Success”) with probability 
, 
and 0 (“Failure”) otherwise. � is called a Bernoulli random variable.

Notation: � ∼ Ber(
)
PMF: B � = 1 = 
,  B � = 0 = 1 − 

Expectation: � � = 
 Note: � �� = 

Variance: Var � = � �� − � � � = 
 − 
� = 
(1 − 
)

50

Examples:
• Coin flip
• Randomly guessing on a 

MC test question
• A server in a cluster fails
• Any indicator RV



Agenda

• Bloom Filters Example & Analysis

• Zoo of Discrete RVs, Part I

– Uniform Random Variables

– Bernoulli Random Variables

– Binomial Random Variables

– Applications
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Binomial Random Variables

A discrete random variable � that is the number of successes in Y
independent random variables �� ∼ Ber 
 .                                                     
� is a Binomial random variable where  � = ∑ ������

52

Examples:
• # of heads in Y coin flips
• # of 1s in a randomly generated n 

bit string
• # of servers that fail in a cluster of 

Y computers
• # of bit errors in file written to disk
• # of elements in a bucket of a 

large hash table

Poll: 
pollev.com/paulbeame028
B (� = &)
A. 
+ 1 − 
 �i+
B. Y

C.

�
+ 
+ 1 − 
 �i+

D.
�

�i+ 
+ 1 − 
 �i+



Binomial Random Variables

A discrete random variable � that is the number of successes in Y
independent random variables �� ∼ Ber 
 .                                                      
� is a Binomial random variable where  � = ∑ ������

Notation: � ∼ Bin(Y, 
)
PMF: B � = & = �

+ 
+ 1 − 
 �i+

Expectation:

Variance:

53

Poll: 
pollev.com/paulbeame028

Mean Variance
A.  
 

B.  Y
 Y
(1 − 
)
C.  Y
 Y
�
D.  Y
 Y�




Binomial Random Variables

A discrete random variable � that is the number of successes in Y
independent random variables �� ∼ Ber 
 .                                                     
� is a Binomial random variable where  � = ∑ ������

Notation: � ∼ Bin(Y, 
)
PMF: B � = & = �

+ 
+ 1 − 
 �i+

Expectation: � � = Y

Variance: Var � = Y
(1 − 
)
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Mean, Variance of the Binomial

If ��, ��, … , �� ∼ Ber(
) and independent (i.i.d.), then

� = ∑ ������ ,    � ∼ Bin(Y, 
)

Claim � � = Y

� � = � � ��

�

���
= � �[��]

�

���
= Y� �� = Y


Claim Var � = Y
 1 − 


Var � = Var � ��
�

���
= � Var ��

�

���
= YVar �� = Y
(1 − 
)
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“i.i.d.” is a commonly used phrase.
It means “independent & identically distributed”



Binomial PMFs
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Binomial PMFs
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Example

Sending a binary message of length 1024 bits over a network with probability 0.999 
of correctly sending each bit in the message without corruption (independent of 
other bits). 

Let � be the number of corrupted bits. 

What is �[�]? 

58

Poll: 
pollev.com/paulbeame028
a. 1022.99
b. 1.024
c. 1.02298
d. 1
e. Not enough information 

to compute


