CSE 312

Foundations of Computing II

Lecture 11: Bloom Filters continued,
Zoo of Discrete RVs, part I

Review Variance – Properties

Definition. The **variance** of a (discrete) RV *X* is

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_{x} p_X(x) \cdot (x - \mathbb{E}[X])^2$$

Theorem. For any
$$a, b \in \mathbb{R}$$
, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

Theorem.
$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Review Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, Var(X + Y) = Var(X) + Var(Y)

Corollary. If $X_1, X_2, ..., X_n$ mutually independent,

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$

Agenda

- Bloom Filters Example & Analysis
- Zoo of Discrete RVs
 - Uniform Random Variables
 - Bernoulli Random Variables
 - Binomial Random Variables
 - Applications

Basic Problem

Problem: Store a subset S of a <u>large</u> set U.

```
Example. U = \text{set of } 128 \text{ bit strings} |U| \approx 2^{128} |S| \approx 1000
```

Two goals:

- 1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
- 2. Minimal storage requirements.

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 - 1. add(x) adds $x \in U$ to the set S
 - **contains**(x) ideally: true if $x \in S$, false otherwise

Possible false positives

Combine with fallback mechanism – can distinguish false positives from true positives with extra cost

Bloom Filters – Ingredients

t ₁	1	0	1	0	0
t ₂	0	1	0	0	1
t ₃	1	0	0	1	0

Basic data structure is a $k \times m$ binary array "the Bloom filter"

- k rows $t_1, ..., t_k$, each of size m
- Think of each row as an m-bit vector

k different hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k : U \to [m]$

Bloom Filters – Three operations

• Set up Bloom filter for $S = \emptyset$

function INITIALIZE(k, m)for i = 1, ..., k: do $t_i = \text{new bit vector of } m \text{ 0s}$

• Update Bloom filter for $S \leftarrow S \cup \{x\}$

function ADD(x) for i = 1, ..., k: do $t_i[h_i(x)] = 1$

• Check if $x \in S$

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

Bloom Filters - Initialization

Bloom filter t of length m = 5 that uses k = 3 hash functions

function INITIALIZE(k, m)

for i = 1, ..., k: **do**

 $t_i = \text{new bit vector of } m \text{ 0s}$

Index →	0	1	2	3	4
t ₁	0	0	0	0	0
t_2	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom Filters: Add

Index into *i*-th bit-vector, at index produced by hash function and set to 1

 $\mathbf{h}_i(x) \rightarrow \text{result of hash}$ function \mathbf{h}_i on x

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	0	0	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") \rightarrow 2

 h_2 ("thisisavirus.com") $\rightarrow 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") \rightarrow 1

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") \rightarrow 1

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom Filters: Contains

function CONTAINS(x)
return
$$t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$$

Returns True if the bit vector t_i for each hash function has bit 1 at index determined by $h_i(x)$,

Returns False otherwise

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$ contains("thisisavirus.com")

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x)

return
$$t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$$

True

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") \rightarrow 1

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

True

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") \rightarrow 1

 h_3 ("thisisavirus.com") \rightarrow 4

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots$	$\wedge t$, $[h, (r)] = -$	- 1	cont	ains("this	isavirus.c	om")	
True True	Tru		h ₂ ("	thisisaviru thisisaviru <mark>thisisaviru</mark>	us.com")	→ 1	
	Index		0	1	2	3	4
Since all conditions satisfied,	returns Tr	ue (corre	ctly)			
	ч1		U	U	ı	U	- 0
	t ₂		0	1	0	0	0
	t ₃		0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

add("totallynotsuspicious.com")

function ADD(x) for i = 1, ..., k: do $t_i[h_i(x)] = 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") \rightarrow 1

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

contains("verynormalsite.com")

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") \rightarrow 2 h_2 ("verynormalsite.com") \rightarrow 0

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True

True

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 2$

 h_2 ("verynormalsite.com") $\rightarrow 0$

 h_3 ("verynormalsite.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots$	$\wedge t_k[h_k(x)] = $	= 1	cont	ains("very	/normalsi	te.com")	
True True				h_1 ("verynormalsite.com") \rightarrow 2			
			$h_2(")$	verynorm	alsite.cor	n") → 0	
				verynorm	alsite.cor	n") → 4	
	Index		0	1	2	3	4
	\rightarrow						-
Since all conditions satisfied,	returns Tr	ue (incor	rectly)			0
	ι ₁		U	l		U	0
	t ₂		1	1	0	0	0
	t ₃		0	0	0	0	1

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that contains(x) returns true if add(x) was never executed before?

Probability over what?! Over the choice of the $h_1, ..., h_k$

Assumptions for the analysis (somewhat stronger than for ordinary hashing):

- Each $\mathbf{h}_i(x)$ is uniformly distributed in [m] for all x and i
- Hash function outputs for each \mathbf{h}_i are mutually independent (not just in pairs)
- Different hash functions are independent of each other

False positive probability – Events

```
Assume we perform add(x_1), ..., add(x_n)
+ contains(x) for x \notin \{x_1, ..., x_n\}
Event E_i holds iff \mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)\}
```

$$P(\text{false positive}) = P(E_1 \cap E_2 \cap \dots \cap E_k) = \prod_{i=1}^k P(E_i)$$

$$\mathbf{h}_1, \dots, \mathbf{h}_k \text{ independent}$$

False positive probability – Events

Event E_i holds iff $\mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)\}$

Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^m P(\mathbf{h}_i(x) = z) \cdot P(E_i^c \mid \mathbf{h}_i(x) = z)$$
LTP

False positive probability – Events

Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c | \mathbf{h}_i(x) = z) = P(\mathbf{h}_i(x_1) \neq z, ..., \mathbf{h}_i(x_n) \neq z | \mathbf{h}_i(x) = z)$$

Independence of values of h_i on different inputs

$$= P(\mathbf{h}_i(x_1) \neq z, \dots, \mathbf{h}_i(x_n) \neq z)$$

$$= \prod_{j=1}^{n} P(\mathbf{h}_{i}(x_{j}) \neq z)$$

Outputs of h_i uniformly spread

$$= \prod_{j=1}^{n} \left(1 - \frac{1}{m} \right) = \left(1 - \frac{1}{m} \right)^n$$

$$P(E_i^c) = \sum_{z=1}^m P(\mathbf{h}_i(x) = z) \cdot P(E_i^c | \mathbf{h}_i(x) = z) = \left(1 - \frac{1}{m}\right)^n$$

False positive probability – Events

Event E_i holds iff $\mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)\}$

Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c) = \left(1 - \frac{1}{m}\right)^n$$

$$FPR = \prod_{i=1}^{k} \left(1 - P(E_i^c)\right) = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$

False Positivity Rate_- Example

$$FPR = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$

e.g.,
$$n = 5,000,000$$

 $k = 30$
 $m = 2,500,000$

FPR = 1.28%

Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with k = 30 and m = 2,500,000

Hash Table

(optimistic) $5,000,000 \times 40B = 200MB$

Bloom Filter

 $2,500,000 \times 30 = 75,000,000$ bits

 $< 10 \, \text{MB}$

Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.

Bloom Filters typical of....

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!

Brain Break

Motivation for "Named" Random Variables

Random Variables that show up all over the place.

 Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

Welcome to the Zoo! (Preview) 🐧 🎮 💝 🦃

$X \sim \text{Unif}(a, b)$

$$P(X = k) = \frac{1}{b - a + 1}$$

$$\mathbb{E}[X] = \frac{a + b}{2}$$

$$Var(X) = \frac{(b - a)(b - a + 2)}{12}$$

$X \sim \mathrm{Ber}(p)$

$$P(X = 1) = p, P(X = 0) = 1 - p$$

$$\mathbb{E}[X] = p$$

$$Var(X) = p(1 - p)$$

$X \sim \text{Bin}(n, p)$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

$$\mathbb{E}[X] = np$$

$$Var(X) = np(1-p)$$

$X \sim \text{Geo}(p)$

$$P(X = k) = (1 - p)^{k-1}p$$

$$\mathbb{E}[X] = \frac{1}{p}$$

$$Var(X) = \frac{1 - p}{p^2}$$

$\overline{X} \sim \text{NegBin}(r, p)$

$$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$$

$$\mathbb{E}[X] = \frac{r}{p}$$

$$Var(X) = \frac{r(1-p)}{p^2}$$

$X \sim \text{HypGeo}(N, K, n)$

$$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

$$\mathbb{E}[X] = n \frac{K}{N}$$

$$Var(X) = n \frac{K(N-K)(N-n)}{N^2(N-1)}$$

Agenda

- Bloom Filters Example & Analysis
- Zoo of Discrete RVs, Part I
 - Uniform Random Variables
 - Bernoulli Random Variables
 - Binomial Random Variables
 - Applications

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation:

PMF:

Expectation:

Variance:

Example: value shown on one roll of a fair die

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation: $X \sim \text{Unif}(a, b)$

PMF:
$$P(X = i) = \frac{1}{b - a + 1}$$

Expectation:
$$\mathbb{E}[X] = \frac{a+b}{2}$$

Variance:
$$Var(X) = \frac{(b-a)(b-a+2)}{12}$$

Example: value shown on one roll of a fair die is Unif(1,6):

•
$$P(X = i) = 1/6$$

•
$$\mathbb{E}[X] = 7/2$$

•
$$Var(X) = 35/12$$

Agenda

- Bloom Filters Example & Analysis
- Zoo of Discrete RVs, Part I
 - Uniform Random Variables
 - Bernoulli Random Variables
 - Binomial Random Variables
 - Applications

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.

Notation: $X \sim Ber(p)$

PMF: P(X = 1) = p, P(X = 0) = 1 - p

Expectation:

Variance:

```
Poll:

pollev.com/paulbeame028

Mean Variance

A. p p

B. p 1-p

C. p p(1-p)
```

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.

Notation: $X \sim Ber(p)$

PMF: P(X = 1) = p, P(X = 0) = 1 - p

Expectation: $\mathbb{E}[X] = p$ Note: $\mathbb{E}[X^2] = p$

Variance: $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = p - p^2 = p(1 - p)$

Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails
- Any indicator RV

Agenda

- Bloom Filters Example & Analysis
- Zoo of Discrete RVs, Part I
 - Uniform Random Variables
 - Bernoulli Random Variables
 - Binomial Random Variables
 - Applications

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$.

X is a Binomial random variable where $X = \sum_{i=1}^{n} Y_i$

Examples:

- # of heads in n coin flips
- # of 1s in a randomly generated n bit string
- # of servers that fail in a cluster of n computers
- # of bit errors in file written to disk
- # of elements in a bucket of a large hash table

Poll:

pollev.com/paulbeame028

$$P(X = k)$$

A.
$$p^k(1-p)^{n-k}$$

C.
$$\binom{n}{k} p^k (1-p)^{n-k}$$

D.
$$\binom{n}{n-k} p^k (1-p)^{n-k}$$

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$.

X is a Binomial random variable where $X = \sum_{i=1}^{n} Y_i$

Notation: $X \sim Bin(n, p)$

PMF: $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

Expectation:

Variance:

Poll: pollev.com/paulbeameo28 Mean Variance A. p pB. np np(1-p)C. np np^2

D. np n^2p

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$.

X is a Binomial random variable where $X = \sum_{i=1}^{n} Y_i$

Notation: $X \sim Bin(n, p)$

PMF: $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

Expectation: $\mathbb{E}[X] = np$

Variance: Var(X) = np(1 - p)

Mean, Variance of the Binomial "i.i.d." is a commonly used phrase. It means "independent & identically distributed"

If
$$Y_1, Y_2, ..., Y_n \sim \text{Ber}(p)$$
 and independent (i.i.d.), then $X = \sum_{i=1}^n Y_i$, $X \sim \text{Bin}(n, p)$

Claim
$$\mathbb{E}[X] = np$$

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} \mathbb{E}[Y_i] = n\mathbb{E}[Y_1] = np$$

Claim Var(X) = np(1-p)

$$Var(X) = Var\left(\sum_{i=1}^{n} Y_i\right) = \sum_{i=1}^{n} Var(Y_i) = nVar(Y_1) = np(1-p)$$

Binomial PMFs

Binomial PMFs

Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).

Let *X* be the number of corrupted bits.

What is $\mathbb{E}[X]$?

Poll:

pollev.com/paulbeame028

- a. 1022.99
- b. 1.024
- c. 1.02298
- d. ⁻
- e. Not enough information to compute