Definition. The variance of a (discrete) RV X is

$$\text{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_x p_x(x) \cdot (x - \mathbb{E}[X])^2$$

Theorem. For any $a, b \in \mathbb{R}$, $\text{Var}(a \cdot X + b) = a^2 \cdot \text{Var}(X)$

Theorem. $\text{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$
Review Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$.

Theorem. If X, Y independent, $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$.

Corollary. If X_1, X_2, \ldots, X_n mutually independent,

$$\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i} \text{Var}(X_i)$$
Agenda

• Bloom Filters Example & Analysis
• Zoo of Discrete RVs
 – Uniform Random Variables
 – Bernoulli Random Variables
 – Binomial Random Variables
 – Applications
Basic Problem

Problem: Store a subset S of a large set U.

Example. $U = \text{set of 128 bit strings}$
\[|U| \approx 2^{128} \]
\[S = \text{subset of strings of interest} \]
\[|S| \approx 1000 \]

Two goals:

1. Very fast (ideally constant time) answers to queries “Is $x \in S$?”
 for any $x \in U$.
2. Minimal storage requirements.
Bloom Filters to the rescue
(Named after Burton Howard Bloom)
Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 1. $\text{add}(x)$ - adds $x \in U$ to the set S
 2. $\text{contains}(x)$ – ideally: true if $x \in S$, false otherwise

Possible false positives

Combine with fallback mechanism – can distinguish false positives from true positives with extra cost
Bloom Filters – Ingredients

Basic data structure is a $k \times m$ binary array “the Bloom filter”

- k rows t_1, \ldots, t_k, each of size m
- Think of each row as an m-bit vector

k different hash functions $h_1, \ldots, h_k : U \rightarrow [m]$
Bloom Filters – Three operations

• Set up Bloom filter for $S = \emptyset$

 function \textsc{initialize}(k, m)
 \hspace{1em} \text{for } i = 1, \ldots, k: \text{ do}
 \hspace{2em} t_i = \text{new bit vector of } m \text{ 0s}

• Update Bloom filter for $S \leftarrow S \cup \{x\}$

 function \textsc{add}(x)
 \hspace{1em} \text{for } i = 1, \ldots, k: \text{ do}
 \hspace{2em} t_i[h_i(x)] = 1

• Check if $x \in S$

 function \textsc{contains}(x)
 \hspace{1em} \text{return } t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1
Bloom Filters - Initialization

function \(\text{INITIALIZE}(k, m) \)

\[
\text{for } i = 1, \ldots, k: \text{ do }
\]

\[
t_i = \text{new bit vector of } m \text{ 0s}
\]

- **Number of hash functions**
- **Size of array associated to each hash function.**

For each hash function, initialize an empty bit vector of size \(m \).
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function INITIALIZE(k, m)
    for $i = 1, \ldots, k$: do
        $t_i = \text{new bit vector of } m \text{ 0s}$
```

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Add

function ADD(x)

for $i = 1, \ldots, k$: do

$$t_i[h_i(x)] = 1$$

for each hash function h_i

Index into i-th bit-vector, at index produced by hash function and set to 1

$h_i(x) \rightarrow$ result of hash function h_i on x
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

add("thisisavirus.com")

$h_1("thisisavirus.com") \rightarrow 2$

function ADD(x)

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```plaintext
function ADD(x)
    for $i = 1, \ldots, k$: do
        $t_i[h_i(x)] = 1$
```

add("thisisavirus.com")

- $h_1("thisisavirus.com") \rightarrow 2$
- $h_2("thisisavirus.com") \rightarrow 1$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

function \(\text{ADD}(x) \)

for \(i = 1, \ldots, k \): do

\(t_i[h_i(x)] = 1 \)

add(“thisisavirus.com”)

\(h_1(“thisisavirus.com”) \rightarrow 2 \)

\(h_2(“thisisavirus.com”) \rightarrow 1 \)

\(h_3(“thisisavirus.com”) \rightarrow 4 \)

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function `ADD(x)`

for $i = 1, \ldots, k$: do

t$_i[h_i(x)] = 1$

add("thisisavirus.com")

$\begin{align*}
h_1(\text{"thisisavirus.com"}) &\rightarrow 2 \\
h_2(\text{"thisisavirus.com"}) &\rightarrow 1 \\
h_3(\text{"thisisavirus.com"}) &\rightarrow 4
\end{align*}$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t$_1$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t$_2$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t$_3$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Contains

function `CONTAINS(x)`

```
return \( t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1 \)
```

Returns True if the bit vector \(t_i \) for each hash function has bit 1 at
index determined by \(h_i(x) \),
Returns False otherwise
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```plaintext
function CONTAINS(x)
    return \( t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1 \)
contains("thisisavirus.com")
```

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```plaintext
function CONTAINS(x)
return $t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1$
```

contains(“thisisavirus.com”)

$h_1(“thisisavirus.com”) \rightarrow 2$

True

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

\[
\text{function } \text{CONTAINS}(x) \\
\quad \text{return } t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1
\]

contains("thisisavirus.com")

\[
\begin{align*}
\text{Index} & \quad 0 & \quad 1 & \quad 2 & \quad 3 & \quad 4 \\
\rightarrow & \\
t_1 & 0 & 0 & 1 & 0 & 0 \\
t_2 & 0 & 1 & 0 & 0 & 0 \\
t_3 & 0 & 0 & 0 & 0 & 1
\end{align*}
\]

\(h_1(\text{"thisisavirus.com"}) \rightarrow 2 \)
\(h_2(\text{"thisisavirus.com"}) \rightarrow 1 \)
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```python
function CONTAINS(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \ldots \land t_k[h_k(x)] == 1$
```

contains("thisisavirus.com")

$h_1(\text{"thisisavirus.com"}) \rightarrow 2$
$h_2(\text{"thisisavirus.com"}) \rightarrow 1$
$h_3(\text{"thisisavirus.com"}) \rightarrow 4$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions.

Function

```python
def CONTAINS(x):
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

Contains(``thisisavirus.com``)

- $h_1(``thisisavirus.com``) → 2$
- $h_2(``thisisavirus.com``) → 1$
- $h_3(``thisisavirus.com``) → 4$

Since all conditions satisfied, returns True (correctly)

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

add("totallynotsuspicious.com")

function $\text{ADD}(x)$

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $\text{ADD}(x)$

For $i = 1, \ldots, k$:

$t_i[h_i(x)] = 1$

add(“totallynotsuspicious.com”)

$h_1(“totallynotsuspicious.com”) \rightarrow 1$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

add(“totallynotsuspicious.com”)

$h_1(“totallynotsuspicious.com”) \rightarrow 1$
$h_2(“totallynotsuspicious.com”) \rightarrow 0$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Function $\text{ADD}(x)$

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

add(“totallynotsuspicious.com”)

- $h_1(“totallynotsuspicious.com”) \rightarrow 1$
- $h_2(“totallynotsuspicious.com”) \rightarrow 0$
- $h_3(“totallynotsuspicious.com”) \rightarrow 4$
Bloom Filters: False Positives

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

function \(\text{ADD}(x) \)

for \(i = 1, \ldots, k \): do

\(t_i[h_i(x)] = 1 \)

add(“totallynotsuspicious.com”)

\(h_1(“totallynotsuspicious.com”) \rightarrow 1 \)

\(h_2(“totallynotsuspicious.com”) \rightarrow 0 \)

\(h_3(“totallynotsuspicious.com”) \rightarrow 4 \)

<table>
<thead>
<tr>
<th>Index (\rightarrow)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```python
function CONTAINS(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

```
contains("verynormalsite.com")
```

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

function \(\text{CONTAINS}(x) \)
 return \(t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1 \)

contains(“verynormalsite.com”)

\(h_1(“verynormalsite.com”) \rightarrow 2 \)

<table>
<thead>
<tr>
<th>Index (t)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

\[
\text{function} \ \text{CONTAINS}(x) \\
\quad \text{return} \ t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1
\]

contains(“verynormalsite.com”)

\[
\begin{align*}
h_1(“verynormalsite.com”) & \rightarrow 2 \\
h_2(“verynormalsite.com”) & \rightarrow 0
\end{align*}
\]

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

<table>
<thead>
<tr>
<th>Index $→$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

contains(“verynormalsite.com”)

$h_1(“verynormalsite.com”) → 2$
$h_2(“verynormalsite.com”) → 0$
$h_3(“verynormalsite.com”) → 4$

function CONTAINS(x)
return $t_1[h_1(x)] == 1 ∧ t_2[h_2(x)] == 1 ∧ \cdots ∧ t_k[h_k(x)] == 1$
Bloom Filters: False Positives

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

```python
function CONTAINS(x)
    return \( t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1 \)
```

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Since all conditions satisfied, returns True (incorrectly)

contains(“verynormalsite.com”)

\(h_1(“verynormalsite.com”) \rightarrow 2 \)
\(h_2(“verynormalsite.com”) \rightarrow 0 \)
\(h_3(“verynormalsite.com”) \rightarrow 4 \)
Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that \(\text{contains}(x) \) returns true if \(\text{add}(x) \) was never executed before?

Probability over what?!
Over the choice of the h_1, \ldots, h_k

Assumptions for the analysis (somewhat stronger than for ordinary hashing):
- Each $h_i(x)$ is uniformly distributed in $[m]$ for all x and i
- Hash function outputs for each h_i are mutually independent (not just in pairs)
- Different hash functions are independent of each other
False positive probability – Events

Assume we perform \(\text{add}(x_1), \ldots, \text{add}(x_n) \)

+ \(\text{contains}(x) \) for \(x \notin \{x_1, \ldots, x_n\} \)

Event \(E_i \) holds iff \(h_i(x) \in \{h_i(x_1), \ldots, h_i(x_n)\} \)

\[
P(\text{false positive}) = P(E_1 \cap E_2 \cap \cdots \cap E_k) = \prod_{i=1}^{k} P(E_i)
\]

\(h_1, \ldots, h_k \) independent, so \(E_i \)'s are independent
False positive probability – Events

Event E_i holds iff $h_i(x) \in \{h_i(x_1), \ldots, h_i(x_n)\}$

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and … and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^{m} P(h_i(x) = z) \cdot P(E_i^c | h_i(x) = z)$$

LTP
False positive probability – Events

Event \(E_i^c \) holds iff \(h_i(x) \neq h_i(x_1) \) and ...
and \(h_i(x) \neq h_i(x_n) \)

\[
P(E_i^c | h_i(x) = z) = P(h_i(x_1) \neq z, ..., h_i(x_n) \neq z | h_i(x) = z)
\]

= \[
P(h_i(x_1) \neq z, ..., h_i(x_n) \neq z)
\]

= \[
\prod_{j=1}^{n} P(h_i(x_j) \neq z)
\]

= \[
\prod_{j=1}^{n} \left(1 - \frac{1}{m}\right) = \left(1 - \frac{1}{m}\right)^n
\]

\(P(E_i^c) = \sum_{z=1}^{m} P(h_i(x) = z) \cdot P(E_i^c | h_i(x) = z) = \left(1 - \frac{1}{m}\right)^n \)
False positive probability – Events

Event E_i holds iff $h_i(x) \in \{h_i(x_1), \ldots, h_i(x_n)\}$

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and ... and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c) = \left(1 - \frac{1}{m}\right)^n$$

$$\text{FPR} = \prod_{i=1}^{k} \left(1 - P(E_i^c)\right) = \left(\frac{P(\mathcal{E})}{\overbrace{P(\mathcal{E}|\mathcal{C})}}\right)^n \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$
False Positivity Rate – Example

\[FPR = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k \]

e.g., \(n = 5,000,000 \)
\(k = 30 \)
\(m = 2,500,000 \)

\[FPR = 1.28\% \]
Comparison with Hash Tables - **Space**

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with $k = 30$ and $m = 2,500,000$

<table>
<thead>
<tr>
<th>Hash Table</th>
<th>Bloom Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(optimistic)</td>
<td></td>
</tr>
<tr>
<td>$5,000,000 \times 40B = 200$MB</td>
<td>$2,500,000 \times 30 = 75,000,000$ bits</td>
</tr>
<tr>
<td></td>
<td>< 10 MB</td>
</tr>
</tbody>
</table>
Time

- Say avg user visits **102,000** URLs in a year, of which **2,000** are malicious.
- **0.5** seconds to do lookup in the database, **1ms** for lookup in Bloom filter.
- Suppose the false positive rate is **3%**

\[
\text{false positives} = 100000 \times 0.03 \times 500\text{ms} + 2000 \times 500\text{ms}\]

\[
\frac{\text{1ms} + \frac{100000 \times 0.03 \times 500\text{ms} + 2000 \times 500\text{ms}}{102000}}{\text{malicious URLs}} \approx 25.51\text{ms}
\]

- vs. **500ms** all the time.
Bloom Filters typical of....

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!
Brain Break
Motivation for “Named” Random Variables

Random Variables that show up all over the place.
 – Easily solve a problem by recognizing it’s a special case of one of these random variables.

Each RV introduced today will show:
 – A general situation it models
 – Its name and parameters
 – Its PMF, Expectation, and Variance
 – Example scenarios you can use it
Welcome to the Zoo! (Preview)

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Probability Mass Function</th>
<th>Expected Value</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X \sim \text{Unif}(a,b)$</td>
<td>$P(X = k) = \frac{1}{b - a + 1}$</td>
<td>$\mathbb{E}[X] = \frac{a + b}{2}$</td>
<td>$\text{Var}(X) = \frac{(b - a)(b - a + 2)}{12}$</td>
</tr>
<tr>
<td>$X \sim \text{Ber}(p)$</td>
<td>$P(X = 1) = p, P(X = 0) = 1 - p$</td>
<td>$\mathbb{E}[X] = p$</td>
<td>$\text{Var}(X) = p(1 - p)$</td>
</tr>
<tr>
<td>$X \sim \text{Bin}(n,p)$</td>
<td>$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$</td>
<td>$\mathbb{E}[X] = np$</td>
<td>$\text{Var}(X) = np(1 - p)$</td>
</tr>
<tr>
<td>$X \sim \text{Geo}(p)$</td>
<td>$P(X = k) = (1 - p)^{k-1}p$</td>
<td>$\mathbb{E}[X] = \frac{1}{p}$</td>
<td>$\text{Var}(X) = \frac{1 - p}{p^2}$</td>
</tr>
<tr>
<td>$X \sim \text{NegBin}(r,p)$</td>
<td>$P(X = k) = \binom{k-1}{r-1} p^r (1 - p)^{k-r}$</td>
<td>$\mathbb{E}[X] = \frac{r}{p}$</td>
<td>$\text{Var}(X) = \frac{r(1 - p)}{p^2}$</td>
</tr>
<tr>
<td>$X \sim \text{HypGeo}(N,K,n)$</td>
<td></td>
<td>$\mathbb{E}[X] = \frac{K}{N}$</td>
<td>$\text{Var}(X) = n \frac{K(N-K)(N-n)}{N^2(N-1)}$</td>
</tr>
</tbody>
</table>
Agenda

• Bloom Filters Example & Analysis
• Zoo of Discrete RVs, Part I
 – Uniform Random Variables
 – Bernoulli Random Variables
 – Binomial Random Variables
 – Applications
Discrete Uniform Random Variables

A discrete random variable \(X \) **equally likely** to take any (integer) value between integers \(a \) and \(b \) (inclusive), is **uniform**.

Notation:

PMF:

Expectation:

Variance:

Example: value shown on one roll of a fair die
Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation: $X \sim \text{Unif}(a, b)$

PMF: $P(X = i) = \frac{1}{b - a + 1}$

Expectation: $\mathbb{E}[X] = \frac{a + b}{2}$

Variance: $\text{Var}(X) = \frac{(b-a)(b-a+2)}{12}$

Example: value shown on one roll of a fair die is $\text{Unif}(1, 6)$:
- $P(X = i) = 1/6$
- $\mathbb{E}[X] = 7/2$
- $\text{Var}(X) = 35/12$
Agenda

- Bloom Filters Example & Analysis
- Zoo of Discrete RVs, Part I
 - Uniform Random Variables
 - Bernoulli Random Variables
 - Binomial Random Variables
 - Applications
Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.

Notation: $X \sim \text{Ber}(p)$

PMF: $P(X = 1) = p$, $P(X = 0) = 1 - p$

Expectation: $E(X) = p$

Variance: $\text{Var}(X) = p(1 - p)$

Poll:

[Link: pollev.com/paulbeame028]

Mean	Variance
A. p, p
B. p, $1 - p$
C. p, $p(1 - p)$
D. p, p^2

Clue: balanced
Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.

Notation: $X \sim \text{Ber}(p)$

PMF: $P(X = 1) = p$, $P(X = 0) = 1 - p$

Expectation: $\mathbb{E}[X] = p$
Note: $\mathbb{E}[X^2] = p$

Variance: $\text{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = p - p^2 = p(1 - p)$

Examples:
- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails
- Any indicator RV
Agenda

• Bloom Filters Example & Analysis
• Zoo of Discrete RVs, Part I
 – Uniform Random Variables
 – Bernoulli Random Variables
 – Binomial Random Variables
 – Applications
Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^{n} Y_i$

Examples:
- # of heads in n coin flips
- # of 1s in a randomly generated n bit string
- # of servers that fail in a cluster of n computers
- # of bit errors in file written to disk
- # of elements in a bucket of a large hash table

Poll:
pollev.com/paulbeame028

$P(X = k)$
A. $p^k(1-p)^{n-k}$
B. np
C. $\binom{n}{k} p^k (1-p)^{n-k}$
D. $\binom{n}{n-k} p^k (1-p)^{n-k}$
Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim Ber(p)$. X is a Binomial random variable where $X = \sum_{i=1}^{n} Y_i$

Notation: $X \sim Bin(n, p)$

PMF: $P(X = k) = \binom{n}{k}p^k(1 - p)^{n-k}$

Expectation:

Variance:
Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a \textbf{Binomial random variable} where $X = \sum_{i=1}^{n} Y_i$

\textbf{Notation:} $X \sim \text{Bin}(n, p)$

\textbf{PMF:} $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

\textbf{Expectation:} $\mathbb{E}[X] = np$

\textbf{Variance:} $\text{Var}(X) = np(1 - p)$
Mean, Variance of the Binomial

If $Y_1, Y_2, ..., Y_n \sim \text{Ber}(p)$ and independent (i.i.d.), then $X = \sum_{i=1}^{n} Y_i$, $X \sim \text{Bin}(n, p)$

Claim $\mathbb{E}[X] = np$

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} Y_i \right] = \sum_{i=1}^{n} \mathbb{E}[Y_i] = n\mathbb{E}[Y_1] = np$$

Claim $\text{Var}(X) = np(1 - p)$

$$\text{Var}(X) = \text{Var}\left(\sum_{i=1}^{n} Y_i \right) = \sum_{i=1}^{n} \text{Var}(Y_i) = n\text{Var}(Y_1) = np(1 - p)$$
Binomial PMFs

PMF for $X \sim \text{Bin}(10,0.5)$

PMF for $X \sim \text{Bin}(10,0.25)$
Binomial PMFs

PMF for $X \sim \text{Bin}(30, 0.5)$

PMF for $X \sim \text{Bin}(30, 0.1)$
Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).

Let X be the number of corrupted bits.

What is $\mathbb{E}[X]$?

Poll:

pollev.com/paulbeame028

- a. 1022.99
- b. 1.024
- c. 1.02298
- d. 1
- e. Not enough information to compute