Lecture 9: Variance and Independence of RVs (continued)
Lecture 10: Bloom Filters
Announcements

• PSet 3 due today
• PSet 2 returned yesterday
• PSet 4 posted this evening
 – Last PSet prior to midterm (midterm is in exactly two weeks from now)
 – Midterm info will follow soon
 – PSet 5 will only come after the midterm in two weeks
Recap Variance – Properties

Definition. The variance of a (discrete) RV X is

$$\text{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_x p_x(x) \cdot (x - \mathbb{E}[X])^2 \geq 0$$

Theorem. For any $a, b \in \mathbb{R}$, $\text{Var}(a \cdot X + b) = a^2 \cdot \text{Var}(X)$

Theorem. $\text{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$
Theorem. \(\text{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 \)

Proof:
\[
\text{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] \\
= \mathbb{E}[X^2 - 2\mathbb{E}[X] \cdot X + \mathbb{E}[X]^2] \\
= \mathbb{E}(X^2) - 2\mathbb{E}[X]\mathbb{E}[X] + \mathbb{E}[X]^2 \\
= \mathbb{E}[X^2] - \mathbb{E}[X]^2 \\
\]
(linearity of expectation!)

\(\mathbb{E}[X^2] \) and \(\mathbb{E}[X]^2 \) are different!
Variance of Indicator Random Variables

Suppose that X_A is an indicator RV for event A with $P(A) = p$ so

$$\mathbb{E}[X_A] = P(A) = p$$

Since X_A only takes on values 0 and 1, we always have $X_A^2 = X_A$ so

$$\text{Var}(X_A) = \mathbb{E}[X_A^2] - \mathbb{E}[X_A]^2 = \mathbb{E}[X_A] - \mathbb{E}[X_A]^2 = p - p^2 = p(1 - p)$$
In General, \(\text{Var}(X + Y) \neq \text{Var}(X) + \text{Var}(Y) \)

Proof by counter-example:

- Let \(X \) be a r.v. with pmf \(P(X = 1) = P(X = -1) = 1/2 \)
 - What is \(\mathbb{E}[X] \) and \(\text{Var}(X) \)?

- Let \(Y = -X \)
 - What is \(\mathbb{E}[Y] \) and \(\text{Var}(Y) \)?

What is \(\text{Var}(X + Y) \)?

\(\text{Var}(X) = \frac{1}{2}(1^2) + \frac{1}{2}(-1)^2 = 1 \)

\(\frac{\mathbb{E}(X^2) - \mathbb{E}(X)^2}{1/2} = \frac{1}{1/2} = 2 \)

\[\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) \]

\[\neq \frac{1}{2}(1^2) + \frac{1}{2}(-1)^2 \]
Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!
Random Variables and Independence

Definition. Two random variables X, Y are *(mutually) independent* if for all x, y,

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$$

Intuition: Knowing X doesn’t help you guess Y and vice versa.

Definition. The random variables X_1, \ldots, X_n are *(mutually) independent* if for all x_1, \ldots, x_n,

$$P(X_1 = x_1, \ldots, X_n = x_n) = P(X_1 = x_1) \cdots P(X_n = x_n)$$

Note: No need to check for all subsets, but need to check for all outcomes!
Example

Let \(X \) be the number of heads in \(n \) independent coin flips of the same coin. Let \(Y = X \mod 2 \) be the parity (even/odd) of \(X \). Are \(X \) and \(Y \) independent?

\[
\begin{align*}
\Pr[X = 0] & \neq 0 \\
\Pr[Y = 1] & \neq 0 \\
\Pr[X = 0 \land Y = 1] & = 0
\end{align*}
\]

Poll: pollev.com/paulbeame028

A. Yes
B. No ✓
Example

Make $2n$ independent coin flips of the same coin. Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips. Are X and Y independent?

Poll:
pollev.com/paulbeame028

A. Yes ✓
B. No
• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
• An Application: Bloom Filters!
Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$

Corollary. If X_1, X_2, \ldots, X_n mutually independent,

$$\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i} \text{Var}(X_i)$$
Example – Coin Tosses

We flip \(n \) independent coins, each one heads with probability \(p \).

- \(X_i = \begin{cases} 1, & \text{\(i \)th outcome is heads} \\ 0, & \text{\(i \)th outcome is tails} \end{cases} \)

- \(Z = \text{number of heads} \)

What is \(\mathbb{E}[Z] \)? What is \(\text{Var}(Z) \)?

Note: \(X_1, \ldots, X_n \) are mutually independent! [Verify it formally!]

\[
\mathbb{E}[Z] = \sum_{i=1}^{n} \mathbb{E}(X_i) = \sum_{i=1}^{n} p \cdot 1 + (1-p) \cdot 0 = np
\]

\[
\text{Var}(Z) = \sum_{i=1}^{n} \text{Var}(X_i) = np(1-p)
\]

Fact. \(Z = \sum_{i=1}^{n} X_i \)

\[
P(X_i = 1) = p \\
P(X_i = 0) = 1 - p
\]

\[
P(Z = k) = \binom{n}{k}p^k(1-p)^{n-k}
\]
(Not Covered) Proof of $E[X \cdot Y] = E[X] \cdot E[Y]$

Theorem. If X, Y independent, $E[X \cdot Y] = E[X] \cdot E[Y]$

Proof

Let $x_i, y_i, i = 1, 2, \ldots$ be the possible values of X, Y.

$$E[X \cdot Y] = \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i \land Y = y_j)$$

$$= \sum_i \sum_j x_i \cdot y_i \cdot P(X = x_i) \cdot P(Y = y_j)$$

$$= \sum_i x_i \cdot P(X = x_i) \cdot \left(\sum_j y_j \cdot P(Y = y_j)\right)$$

$$= E[X] \cdot E[Y]$$

Note: **NOT** true in general; see earlier example $E[X^2] \neq E[X]^2$
(Not Covered) Proof of $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$

Theorem. If X, Y independent, $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$

Proof

\[
\text{Var}(X + Y) \\
= \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2 \\
= \mathbb{E}[X^2 + 2XY + Y^2] - (\mathbb{E}[X] + \mathbb{E}[Y])^2 \\
= \mathbb{E}[X^2] + 2 \mathbb{E}[XY] + \mathbb{E}[Y^2] - (\mathbb{E}[X]^2 + 2 \mathbb{E}[X] \mathbb{E}[Y] + \mathbb{E}[Y]^2) \\
= \mathbb{E}[X^2] - \mathbb{E}[X]^2 + \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y] \\
= \text{Var}(X) + \text{Var}(Y) + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y] \\
= \text{Var}(X) + \text{Var}(Y)
\]

equal by independence
Brain Break
Agenda

• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
• An Application: Bloom Filters!
Basic Problem

Problem: Store a subset S of a large set U.

Example. $U =$ set of 128 bit strings $|U| \approx 2^{128}$
$S =$ subset of strings of interest $|S| \approx 1000$

Two goals:

1. Very fast (ideally constant time) answers to queries “Is $x \in S$?”
 for any $x \in U$.
2. Minimal storage requirements.
Naïve Solution I – Constant Time

Idea: Represent S as an array A with 2^{128} entries.

$S = \{0, 2, \ldots, K\}$

Membership test: To check $x \in S$ just check whether $A[x] = 1$.

→ constant time!

Storage: Require storing 2^{128} bits, even for small S.
Naïve Solution II – Small Storage

Idea: Represent S as a list with $|S|$ entries.

$S = \{0, 2, \ldots, K\}$

Storage: Grows with $|S|$ only

Membership test: Check $x \in S$ requires time linear in $|S|$ (Can be made logarithmic by using a tree)
Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[h(x)] = x$

Storage: m elements (size of array)

hash function $h: U \rightarrow [m]$
Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[h(x)] = x$

Storage: m elements (size of array)

Challenge 1: Ensure $h(x) \neq h(y)$ for most $x, y \in S$

Challenge 2: Ensure $m = O(|S|)$
Hashing: collisions

Collisions occur when $h(x) = h(y)$ for some distinct $x, y \in S$, i.e., two elements of set map to the same location.

- Common solution: chaining – at each location (bucket) in the table, keep linked list of all elements that hash there.

$1 \ 2 \ 3 \ 4 \ 5 \ \ldots \ \ m$

$x_1 \ x_2 \ x_3$

$h(x_1) = h(x_3)$
Good hash functions to keep collisions low

• The hash function h is good iff it
 – distributes elements uniformly across the m array locations so that
 – pairs of elements are mapped independently

“Universal Hash Functions” – see CSE 332
Hashing: summary

Hash Tables

• They store the data itself
• With a good hash function, the data is well distributed in the table and lookup times are small.
• However, they need at least as much space as all the data being stored, i.e., \(m = \Omega(|S|) \)

In some cases, \(|S|\) is huge, or not known a-priori ...

Can we do better!?
Bloom Filters to the rescue

(Named after Burton Howard Bloom)
Bloom Filters – Main points

- Probabilistic data structure.
- Close cousins of hash tables.
 - But: Ridiculously space efficient
- Occasional errors, specifically false positives.
Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 1. $\text{add}(x)$ - adds $x \in U$ to the set S
 2. $\text{contains}(x)$ – ideally: true if $x \in S$, false otherwise

Instead, relaxed guarantees:
- False \rightarrow definitely not in S
- True \rightarrow possibly in S
 [i.e. we could have false positives]
Bloom Filters – Why Accept False Positives?

• **Speed** – both **add** and **contains** very very fast.

• **Space** – requires a miniscule amount of space relative to storing all the actual items that have been added.
 – Often just 8 bits per inserted item!

• **Fallback mechanism** – can distinguish false positives from true positives with extra cost
 – Ok if mostly negatives expected + low false positive rate
Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be space-efficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don’t need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.
Bloom Filters – More Applications

• Any scenario where space and efficiency are important.
• Used a lot in networking
• In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
• Google BigTable uses Bloom filters to reduce disk lookups
• Internet routers often use Bloom filters to track blocked IP addresses.
• And on and on...
What you can’t do with Bloom filters

• There is no delete operation
 – Once you have added something to a Bloom filter for \(S \), it stays

• You can’t use a Bloom filter to name any element of \(S \)

But what you can do makes them very effective!
Bloom Filters – Ingredients

Basic data structure is a \(k \times m \) binary array “the Bloom filter”

- \(k \) rows \(t_1, \ldots, t_k \), each of size \(m \)
- Think of each row as an \(m \)-bit vector

\(k \) different hash functions \(h_1, \ldots, h_k : U \rightarrow [m] \)
Bloom Filters – Three operations

- Set up Bloom filter for $S = \emptyset$

- Update Bloom filter for $S \leftarrow S \cup \{x\}$

- Check if $x \in S$

function \textsc{initialize}(k, m)
 for $i = 1, \ldots, k$:
 t_i = new bit vector of m 0s

function \textsc{add}(x)
 for $i = 1, \ldots, k$:
 $t_i[h_i(x)] = 1$

function \textsc{contains}(x)
 return $t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1$
Bloom Filters - Initialization

function INITIALIZE(k, m)

```
for $i = 1, \ldots, k$: do
  $t_i = \text{new bit vector of } m \text{ 0s}
```

- Number of hash functions
- Size of array associated to each hash function.
- for each hash function, initialize an empty bit vector of size m