CSE 312
Foundations of Computing i

Lecture 9: Variance and Independence of RVs (continued)
Lecture 10: Bloom Filters



Announcements

* PSet 3 due today
* PSet 2 returned yesterday
* PSet 4 posted this evening

— Last PSet prior to midterm (midterm is in exactly two weeks from
now)

— Midterm info will follow soon

— PSet 5 will only come after the midterm in two weeks



Variance - Properties

_____________________________________________________________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________________________________________

Theorem. Var(X) = E[X?] — E[X]? 5
S, S ——



Variance

________________________________________________________

= E[X% — 2E[X] - X + E[X]?]

= E(X?) — 2E[X]E[X] + E[X]?

_ [E[XZ] - IE[X]Z (linearity of expectation!)

_ E[X?] and E[X]?
“are different !

___________________________



Variance of Indicator Random Variables

Suppose that X, is an indicator RV for event A with P(A) = p so
N

E[X,] = P(A) =p

P

_

Since X, only takes on values 0 and 1, we always have X; = X,
so a4 o —
[ N
Var(X,) = E[@] — E[X4]2= E[X,] — E[X4]* =p —p* = ?(1 —p)
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/(x=1 \

Proof by counter-example: K ) /

 Let X bea ré/. with pfﬂfP({(:_l) =PX=-1)=1/2
—Whatis E[X]| and Var(X)?

* letY = —X
= = T — Y_A J—-—0
—Whatis E[Y] and Var(Y)? ¢

9 L
What s Var(X + V)? <€ V& () +~VARY

B | |

L

In General, Var(X + Y) # Var(X) + Var(Y) Vor (X2 & Ki)‘@_xi
O




Agenda

* Variance

* Properties of Variance

* Independent Random Variables @

* Properties of Independent Random Variables

An Application: Bloom Filters!



Random Variables and Independence ,
Comma is shorthand for AND

' Definition. Two random variables X, Y are (mutually) independent if

for al@

A B =xT o) = PO =) P =) ‘
. =x,Y=vy)= = X) - = e
ey g T

Definition. The random variables X3, ..., X;, are (mutually) independent if

forall x4, ..., x,, —
P(Xl —_ xl, ""XTl —_ xn) —_ P(Xl — xl) "'P(Xn — xn)

_____________________________________________________________________________________________________________________________________________________________________

Note: No need to check for all subsets, but need to check for all outcomes!




Example

Let X be the number of heads in n independent coin flips of the
same coin. Let Y = X mod 2 be the parity (even/odd) of X.

Are X and Y independent?

\O(f C*// D(] 76 - Poll:

\7\([><‘7’—‘O d’\{—'/\g g\ \l\/leos o




Example

Make 2n independent coin flips of the same coin.

Let X be the number of heads in the first n flips and Y be the
number of heads in the last n flips.

Are X and Y independent?

Poll:

pollev.com/paulbeame028

A. Yes
B. No
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Agenda

Variance

Properties of Variance

Independent Random Variables

Properties of Independent Random Variables @
An Application: Bloom Filters!
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Important Facts about Independent Random Variables

___________________________________________________________________________________________________________________________________________________

...................................................................................................................................................

n n
Var X; | = z Var(X;)
____________________________________________________________________________________________ n R
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Example - Coin Tosses

1, ith outcome is heads

0, i outcome is tails. e

- Z =number of heads 2 Vi”/m P(X:1):p ------------- ,
P ,\’ \l? Y'\ - adl("p‘ P(X; =0)=1-p
lan [E\ |2 Whatis Var(Z)? V\ K’ (\ \')}-------------__......L.'.'.'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_‘_‘_‘_‘_‘_‘_‘_‘_‘_‘_‘_‘_'_'_'_'_'_"i
PEZ=R)=(pa—pn

_________________________________________________________________

Note: X1, ..., X,, are mutually independent! [Verify it formally!]

) Var(2) = Y VarCo) Phop(-p)  Netevarty =)
i=1

_______________________________________________________



(Not Covered) Proof of E[X - Y] = E[X] - E[Y]

___________________________________________________________________________________________________________________________________________________

Proof Let x;,y;,i = 1,2, ...be the possible values of X, Y.

iJ ‘ Y> independence
:szi'Yi'P(X=xi)'P(Y:3’j)
T _—

:le--P(X=xi)'<2y]"P(yz3’j)>
J

l

= E[X] - E[Y]

Note: NOT true in general; see earlier example E[X?]#E[X]?




(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

___________________________________________________________________________________________________________________________________________________

Proof Var(X +Y)

= E[(X + Y)?] — (E[X + Y])? _— linearity

= E[X? + 2XY + Y?] — (E[X] + E[Y])?

= E[X?] + 2 E[XY] + E[v2] — (E[X]? + 2 E[X] E[Y] + E[Y]?)
= E[X?] — E[X]? + E[Y?] — E[Y]? + 2 E[XY] — 2 E[X] E[Y]

= Var(X) + Var(Y) + 2 E[XY] — 2 E[X] E[Y]
= Var(X) + Var(Y)

equal by independence
15
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Brgin Break .,




Agenda

Variance

Properties of Variance

Independent Random Variables

Properties of Independent Random Variables
An Application: Bloom Filters! @
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Basic Problem

Problem: Store a subset S of a large set U.

Example. U = set of 128 bit strings |U| =~ 2128
S = subset of strings of interest S| ~ 1000

 Two goals:
1. Very fast (ideally constant time) answers to queries “Is x € §?”
forany x € U.

2. Minimal storage requirements.

__________________________________________________________________________________________________________________________________________________________________
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Naive Solution | - Constant Time

__— Alx] = {1 ifx€esS

Idea: Represent S as an array A with 2722 entries. 0 ifxegs

S={02.. 1 NI (T T N 2 I N
\ 1 0 1 0 1 0 0

Membership test: To check. x € S just check whether A[x]| = 1.

— constant time! L/é

Storage: Require storing 2128 bits, even for small S. e‘(_'l
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Naive Solution Il - Small Storage

Idea: Represent S as a list with |S| entries.

S ={0,2,..,K ‘ o[\ 2 T/\ /\ K‘

Storage: Grows with |S| only L/é
Membership test: Check x € S requires time linearin |S|

(Can be made logarithmic by using a tree) %{‘J
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Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check x € S just check whether Alh(x)| = x

Storage: m elements (size of array)

hash function h: U — [m]
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Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check x € S just check whether Alh(x)| = x

Storage: m elements (size of array)

Challenge 2: Ensure
m = 0(|S])

©

Challenge 1: Ensure

h(x) + h(y) for
most x,y € S

\

22



Hashing: collisions

Collisions occur when h(x) = h(y) for some distinct x,y € S,
i.e., two elements of set map to the same location

Common solution: chaining — at each ! i 3]4]5] - |m
location (bucket) in the table, keep = ) )h( |

linked list of all elements that hash there.
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Good hash functions to keep collisions low

* The hash function h is good iff it
— distributes elements uniformly across the m array locations so that

— pairs of elements are mapped independently

““‘Universal Hash Functions” — see CSE 332
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Hashing: summary

Hash Tables

* They store the data itself

* With a good hash function, the data
is well distributed in the table and

lookup times are small. In some cases, |S| is huge,

 However, they need at least as much / or not known a-priori ...
space as all the data being stored, —

i.e., m = QS| \\ ;
— Can we do

better!?
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to the rescue

(Named after®urton Howard Bloo
Ik THAYT

M Bloom Filter
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Bloom Filters — Main points

Probabilistic data structure.

Close cousins of hash tables.
- But: Ridiculously space efficient

Occasional errors, specifically false positives.
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Bloom Filters

Stores information about a set of elements S € U.
Supports two operations:

\1Maddsx € Uto’ch/es_et—S>

2. contains(x) —ideally: trueif x € §, false otherwise

Instead, relaxed guarantees:
. False — definitely notin S

. True — possibly in S
[i.e. we could have false positives]
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Bloom Filters - Why Accept False Positives?

* Speed - both add and contains very very fast.

* Space - requires a miniscule amount of space relative to
storing all the actual items that have been added.

— Often just gﬁpe\rinsei@

* Fallback mechanism - can distinguish false positives from
true positives with extra cost

— Ok if mostly negatives expected + low false positive rate
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Bloom Filters: Application

Google Chrome has a database of malicious URLs, but it takes a long

time to query.

Want an in-browser structure, so needs to be efficient and be space-

efficient

Want it so that can check if a URL is in structure:

- If return False, then definitely not in the structure (don’t need to
do expensive database lookup, website is safe)

- If return True, the URL may or may not be in the structure. Have to
perform expensive lookup in this rare case.

30



Bloom Filters — More Applications

* Any scenario where space and efficiency are important.
* Used alot in networking

* Indistributed systems when want to check consistency of data across
different locations, might send a Bloom filter rather than the full set
of data being stored.

* Google BigTable uses Bloom filters to reduce disk lookups

* Internet routers often use Bloom filters to track blocked IP
addresses.

* Andonandon...
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What you can’t do with Bloom filters

* Thereis no delete operation
— Once you have added something to a Bloom filter for S, it stays

* You can’t use a Bloom filter to name any element of §

_

But what you can do makes them very effective!
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Bloom Filters - Ingredients

Basic data structure is a k X m binary array | —

“the Bloom filter” - — —_ l
° krowsty,...,t,eachof sizelrL by | ~———
* Think of each row as an m-bit vector

k different hash functions hy, ..., hy,: U — [m]
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Bloom Filters — Three operations

* Set up Bloom filter for S = @

function INITIALIZE(k, m)

fori=1,.., k:do
t; = new bit vector of m Os

function ADD(x)
fori=1,.., k:do
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Bloom Filters - Initialization

Size of array

Number of :
associated to

hash N hash

functions 216 . &2
function.

function INITIALIZE(k, m)

. _ _, for each hash
fori=1,..,k:do function, initialize

t; = new bit vector of m Os an empty bit
vector of size m




