CSE 312
Foundations of Computing i

Lecture 7: Random Variables



Announcements

* PSet1graded + solutions on canvas

* PSet 2 due tonight

* Pset 3 posted this evening
— First programming assignment (naive Bayes)
— Extensive intro in the sections tomorrow
— Python tutorial lesson on edstem



Chain rule & independence

Theorem. (Chain Rule) For events 44, A4, ..., 4,
P(A;n--NAy) =P(Ay) - P(A3]41) - P(A3]4; N Ay) i
< PApAiNA;N-NApy) |

'~ Definition. Two events 4 and 4 are (statistically) independent if
P(ANB) = P(A) - P(B).
/—. —

_—

______________________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________



One more related item: Conditional IndependencéC P Q))

« IfP(ANC) # 0, equivalentto P(B|[ANC) = P(B|C)
« IfP(BNC) #0,equivalentto P(A|[BNC) =P(A|C)

_____________________________________________________________________________________________________________________________________________________________________

Plain Independence. Two events A and B are independent if
| P(ANnB) = P(A) - P(B).

+ IfP(A) # 0, equivalent to P(B|4) = P(B) /
+ IfP(B) # 0, equivalent to P(A|B) = P(A)

O 4___:



Ty (i
Example - Th@g@i’re

Suppose that Coin 1 has probability of heads 0.3

and Coin 2 has probability of head 0.9.
We choose one coin randomly with equal probability and flip that coin 3
times independently. What is the probability we get all heads?

\/

[Z(HHHl — P(H[—[[—[ |C1) . P(Cl) + P(@l CZ) . P(CZ) LawofTo(thlll;)robability

= fw?’ P(C)) + P(H\lClz)3 P(C2)  Conditional Independence

=0.33-0.5 +0.9%-0.5 = 0.378
— C; = coin i was selected



Conditional independence and Bayesian inference in practice:
Graphical models

 Thesample space (1 is often the Cartesian product of possibilities of
many different variables r

« We often can understand the probability distribution P on () based on
local properties that involve a few of these variables at a time
W U die

« We can represent this via a directed acyclic graph augmented with
probability tables (called a Bayes net) in which each node represents
one or more variables...




Graphical Models/Bayes Nets

* Bayes net for the Zika testing probability space ({1, P)
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Conditional Probability Table:

* One column for each value of
the variables at the node

* One row for each combination
of values of immediate
predecessors

() = Cartesian product of possible
value assignments at all nodes.




Graphical Models/Bayes Nets
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“A Bayesian Network Model for Diagnosis of Liver Disorders” — Agnieszka Onisko, M.S.,
Marek J. Druzdzel, Ph.D., and Hanna Wasyluk, M.D.,Ph.D.- September 1999.



Graphical Models/Bayes Nets

Bayes Net assumption/requirement

* The only dependence between variables is given by paths in
the Bayes Net graph:

* if only edges are

then A and C are conditionally independent given the value of B

A, B, C conditionally ° 0 e

independent given D

o ° e A, B, and C are Q

independent

Defines a unique global probability space ((), P)




Inference in Bayes Nets

Given
* Bayes Net
* graph
» conditional probability tables
for all nodes

Observed values of variables at
some nodes

* e.g, clinical test results

Compute

* Probabilities of variables at
other nodes

e e.g., diagnoses

For much more see CSE 473
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Chain rule & independence

Theorem. (Chain Rule) For events 44, A4, ..., 4,
P(A;n--NAy) =P(Ay) - P(A3]41) - P(A3]4; N Ay) i
- P(AplA1NAy N NAp_q) |

'~ Definition. Two events 4 and 4 are (statistically) independent if
P(ANB) = P(A) - P(B).

______________________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________

~ Definition. Two events 4 and B are independent conditioned on C if
' P(C) #0and P(ANB|C)=P(A|C)-P(B|C).

_____________________________________________________________________________________________________________________________________________________________________



Agenda

Random Variables a
Probability Mass Function (PMF)
Cumulative Distribution Function (CDF)

* Expectation

12



Random Variables (Idea)

Often: We want to capture quantitative properties of the
outcome of a random experiment, e.g.:
— What is the total of two dice rolls?
— What is the number of coin tosses needed to see the first head?
— What is the number of heads among 2 coin tosses?

13



Random Variables

Definition. A random variable (RV) for a probability space
(), P)isatfunction X:Q - R

L]
e

The set of values that )_Lcan take on is called its range/support

Two common notations: X({)) or (.

1
________________________________________________________________________________________________________________________________________________________________________

Example. Two coin flips: Q = {Iﬁ, HT, TH, TT} ()= éb)\’{}
X = number of heads in two coin flips
XHH) =2 XHD=1 X(TH=1 X(TT=0
range (or s:pport) of X is X(Q) = {0,1,2}

14



Another RV Example

20 different balls labeled 1, 2, ..., 20 in ajar
— Draw a subset of 3 from the jar uniformly at random
— Let X = maximum of the 3 numbers on the balls
* Example: X({2,7,5}) =;

* Example: X({15,3,8}) = 15 pollev.com/paulbeame028

How Iarge IS |X(.Q)|7 A 203
— { B. 20
XW'ZEJ o 7y C. 18 <

)(('/\,7 ’ Xm’} l ng D. (230)
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Random Variables

Definition. For a RV X: ) - R, we define the event
i {X:x}z{a)/E_QIXga))zx}
WewriteP(X =x) =P({(X=x})

Random variables
partition the
sample space.

/EZEX(Q)P(X =Xx) = 1)




Random Variables

Definition. For a RV X: ) - R, we define the event
i X=x}={weQ|X(w) =x}
We write P(X = x) = P({X = x})

Example. Two coin flips: Q = {TT,HT, TH, HH} 2 L
X = number of heads in two coin flips Qx = X(Q) ={0,1,2}

p(x=0)=% p(x=1)=% P(X =2) =
— \— ~

The RV X yields a new probability distribution with sample space(ﬂ,s c R!

17



Agenda

Random Variables
Probability Mass Function (PMF)
Cumulative Distribution Function (CDF)

* Expectation

18



lﬂ.—-; z/’

Probability Mass Function (PMF) 3o
&

_____________________________________________________________________________________________________________________________________________________________________

Deflnltlon Fora RV X: () — R, the function px@ - R
defmed by px(x) = P(X = x) is called the probability mass

| function (PMF) of X

_____________________________________________________________________________________________________________________________________________________________________

Random variables
partition the
sample space.

z P(X =x) =1 ()

xeX(Q) 19



Probability Mass Function (PMF)

_____________________________________________________________________________________________________________________________________________________________________

Definition. For a RV X: () — R, the function py: Qy - R
defined by px(x) = P(X = x) is called the probability mass
function (PMF) of X

_____________________________________________________________________________________________________________________________________________________________________

Random variables
partition the
sample space.

ZP(X:x)zl ()

XE.QX 20



Probability Mass Function (PMF)

_____________________________________________________________________________________________________________________________________________________________________

Definition. For a RV X: () — R, the function py: Qy - R
defined by px(x) = P(X = x) is called the probability mass
function (PMF) of X

_____________________________________________________________________________________________________________________________________________________________________

Random variables
partition the
sample space.

XEQNx 21



Example - Two Fair Dice

X = sum of two dice throws

e 1%

( z«»L\:
2,
[+ 42 Dx
y 42
6/36 X\

5/36

4/36

3/36

2/36

1/36 I
4 5 6 8 9

@ @ 10 11 12
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Example - Number of Heads

We flip n coins, independently, each heads with probabil(it‘y_;z____{
n
Q={HH---HH,HH---HT,HH---TH, ..., TT --- TT} A

W o le.
X = # of heads P (v /(’ (1 ! headhl

n
px(0) = PO =k) = () (1 =p)"
AW T T - ’
\_/
S

w (\ '#()Bf sequences with k heads Prob of se nce W/ k
Q & \ Locebs f [ ety ? 7 /L?)
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Agenda

Random Variables

Probability Mass Function (PMF)
Cumulative Distribution Function (CDF) @
* Expectation

25



Events concerning RVs

We already defined P(X = x) = P({X = x}) where
X=x}={weQ|X(w) =x} ’Xé’?.(

Sometimes we want to understand otherevents involving RV X
—e.g. {X <x}={w€ Q| X(w) < x} which makes sense forany x € R
e

More generally...

— We could take any predicate O (-) defined on the real numbers, and consider an
event {0(X)} ={w € Q| Q(X(a))) is true}

— If Q(+,-) is a predicate of two real numbers and X and Y are RVs both defined on
Q then{Q(X,Y)} ={w € Q| Q(X(a)), Y(a))) is true}

— The same thing works for properties of even more RVs
26



Cumulative Distribution Function (CDF)

Definition. For a RV X: (1 — R, the cumulative distribution function of
X is the function Fy: R — [0,1] that specifies for any real number x, the

probability that X < .
e —

Thatis, Fy is defined by Fy(x) = P(X < x)

_____________________________________________________________________________________________________________________________________________________________________
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Example - Two fair coin flips

________________________________________________________________________________________

Probability Mass Function

Cumulative Distribution Function

PMF CDF
Px
Fx
-1 2 3 -1 (0] 1 2 3
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Agenda

Random Variables
Probability Mass Function (PMF)
Cumulative Distribution Function (CDF)

* Expectation @
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Expectation (Idea)

Example. Two fair coin flips
Q = {TT,HT, TH, HH}

X = number of heads

Px

If we chose samples from ()
over and over repeatedly, how
many heads would we expect to
see per sample from (2?

— The idealized number, not the
average of actual numbers seen
(which will vary from the ideal)

3/4

1/2

1/4
| |

30




Expected Value of a Random Variable

Definition. Given a discrete RV X: () — R, the expectation or expected
- value or mean of X is ‘

— —
E[X] = X(w) - P(w)
—_— \—J
wWE()
or equivalently
E[X] = z P(X =x) = z % - py ()
xeX() XEQN

Intuition: “Weighted average” of the possible outcomes (weighted by probability)
31



Expected Value

' Definition. The expected value of a (discrete) RV X is

E[X] = 2x X Px(x) = Xxx - P(X = x)

Example. Value X of rolling one fair die

1
px(1) = px(2) = - = px(6) = ‘
2

E[X] =1 1:2 1+3'1/-|I-4 1+5 1+; —=__ =35
6 6 6 6 6 6 6

For the equally-likely outcomes case, this is just the average of the possible outcomes!
32



