CSE 312
Foundations of Computing i

Lecture 6: Bayesian Inference, Chain Rule,
Independence



Conditional & Total Probabilities

* Conditional Probability

P(ANB)
P(B|A) = PCA)
* Bayes Theorem
P(A|B) = P(BIL/(%I;(A) if P(A) # 0,P(B) # 0
* Law of Total Probability Ei, ..., E, partition

BB & : P(F)= ) P(FNE;) =) P(FIE)P(E)
y R
Q




Conditional Probability Defines a Probability Space

The probability conditioned on A follows the same properties as
(unconditional) probability.

Example. P(B°|-A) =1 — P(B|A)

Formally. (Q, P) is a probability space and P(A) > 0
.

‘ (A, P(-|A)) is a probability space



Agenda

Bayes Theorem + Law of Total Probability
Chain Rule
Independence

Infinite process and Von Neumann’s trick

Conditional independence



Example - Zika Testing

Suppose we know the following Zika stats
— Atestis 98% effective at detecting Zika (“true positive”) P (T|Z)
— However, the test may yield a “false positive” 1% of the time P (T'|Z°)
— 0.5% of the US population has Zika. P (Z)

’/f—\

What is the probability you have Zika (event Z) if you test positive (event T').?



Example - Zika Testing

Suppose we know the following Zika stats
— Atestis 98% effective at detecting Zika (“true positive”)  P(T|Z)

— However, the test may yield a “false positive” 1% of the time P (T'|Z¢)
500 have Zika (0.5%)

— 0.5% of the US population has Zika. P (Z) G9,509do not

What is the probability you have Zika (event Z) if you test posijtive (event T')?

98% of those
Suppose we had 100,000 people: with Zika

¥ « 490 have zZika and test positiv% 2% of those
* 10 have Zika and test negative” | WithZika
%~s 995 do not have Zika and test positive

il nilile e niile niie nlle niie nlle

mlle e mili- mjls mlil> o> =il

6o 1% of those
?(2 (’r) -~ 490 ~ 0.33 without Zika
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Philosophy - Updating Beliefs
While it’s not 98% that you have the disease, your beliefs changed drastically

Z =you have Zika
T = you test positive for Zika

| now have a 33%
chance of having Zika
after the test!!!

| have a 0.5% chance Receive positive
of having Zika test result

Prior: P(Z) Posterior: P(Z|T)




Example - Zika Testing

Suppose we know the following Zika stats
— Atestis 98% effective at detecting Zika (“true positive”) P (T|Z)
— However, the test may yield a “false positive” 1% of the time P (T'|Z°)
— 0.5% of the US population has Zika. P (Z)

What is the probability you test negative (event T°) if you have Zika (event Z)?

P(T€|Z) = 1— P(T|Z) = 2%



Example - Zika Testing

Suppose we know the following Zika stats
— Atestis 98% effective at detecting Zika (“true positive”)  P(T|Z)
— However, the test may yield a “false positive” 1% of the time P (T|Z¢) &
— 0.5% of the US population has Zika. P (Z)

What is the probability you test negative (event T) if you have Zika (event Z)?
P(T°|Z) = 1 - P(T|Z) =32 )

What is the probability you have Zika (event Zgﬁm‘@wegative (event T€)?
| 2P

By Bayes Rule, P(Z|T°) = _ |
-~ P(T€) A
By the Law of Total Probability, P(T¢) = @‘ (TC|ZEWP(Z©)
_2 5 995 _ 10 98505
~ 100 1000 100/ 1000 100000 ' 100000
So, P(Z|T¢) = ——— ~ 0.01 %

10+98505 9



Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let £, £, ..., E,, be a partition of the
sample space, and F and event. Then,

P(F|E;)P(E;) P(F|E,)P(E,)

PR =—FF =S pEFIENPE)

Simple Partition: In particular, if £ is an event with non-zero
probability, then

P(F|E)P(E)
P(F|E)P(E) + P(F|E€)P(E®)

P(E|F) =
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Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let £, £, ..., E,, be a partition of the
sample space, and F and event. Then,

P(FIE)P(E;) _  P(FIEDP(Ey)

P(E{|F) =

Simple Partition: In particu
probability, then

P(E|F) =

P(F) i=1 P(F|E;)P(E;)

We just used this implicity on the negative Zika
test example with E =ZandF =T¢

7
P(F|E)P(E)

P(F|E)P(E) + P(F|E€)P(E®)
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Our First Machine Learning Task: Spam Filtering

Subject: “FREE CLICK HERFE”

What is the probability this email is spam, given the subject contains
“FREE”?

Some useful stats:
— 10% of ham (i.e., not spam) emails contain the word “FREE” in the subject.
— 70% of spam emails contain the word “FREE” in the subject.
— 80% of emails you receive are spam.

12
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* Bayes Theorem + Law of Total Probability

Chain Rule a

Independence

Infinite process and Von Neumann’s trick

Conditional independence
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Chain Rule

P(A N B)

o m) P(A)P(B|A) = P(ANB)

P(B|A) =

14



Often probability space (), P) is given implicitly via sequential

process
R|ght <
Recall from last time:
Left <

P(B) = P(Left) x P(B|Left) + P(Right) x P(B|Right)

What if we have more than two (e.g., n) steps?
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Chain Rule

P(BA) P(A N B)

Theorem. (Chain Rule) For events 4, 4,, ..., 45,
P(A; N --NAy) =P(41) - P(A2]41) - P(A3|A; N Aj)

N— ——

An easy way to remember: We have n tasks and we can do them
sequentially, conditioning on the outcome of previous tasks
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Chain Rule Example

Shuffle a standard 52-card deck and draw the top 3 cards.

(uniform probability space)

——

4 9 b "¢
What is P( 0 h7d )=P(ANBNC)?
Vo
Voo ee (¢ :
Y . A: Ace of Spades First
\ 5 “
‘ B: 10 of Clubs Second
) - P A - A ) ) C: 4 of Diamonds Third
1 1 1

52 51 50



Agenda

* Bayes Theorem + Law of Total Probability
Chain Rule
Independence @

Infinite process and Von Neumann’s trick

Conditional independence
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Independence

Definition. Two events A and B are (statistically) independent if

g P(ANB) = P(A4) - P(B).
s o .
Equivalent formulations:

 IfP(A) # 0, equivalentto P(B|A) = P(B)

* If P(B) # 0, equivalent to Pw

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

~ “The probability that B occurs after observing A” — Posterior
= “The probability that B occurs” - Prior

_________________________________________________________________________________________________________________________________
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Independence - Example

Assume we toss two fair coins

“first coin is heads”

“second coin is heads”

P(A) =2 X

A = {HH, HT}
B = {HH, TH}

P(B) =2 X

P(ANB) = P({HH)) = % — P(4) - P(B)

»-[>|+—x -PIH

Nlr—\ Nlr—*
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Example - Independence

Toss a coin 3 times. Each of 8 outcomes equally likely.
«A={atmostoneT} = {HHH, HHT, HTH, THH}
*B={atmost2 H's} = {HHH}¢

Independent? |

P(A n B) —7P(A) P(B)
= onII (G
B/X L mes mde&ndent

3,1 &> v
giz 8 pollev/paulbeame028

21



Multiple Events — Mutual Independence

_____________________________________________________________________________________________________________________________________________________________________

Definition. Events 44, ..., 4,, are mutually independent if for every
- non-empty subset ] € {1, ..., n}, we have

_——

__________________________________________________________________________________________________________________________________________________________________
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Example - Network Communication

Each link works with the probability given, independently

i.e., mutually independent
events 4, B, C, D with / )

P(A) =p
P(B) =q
P(C)=r

P(D) =s



Example - Network Communication

If each link works with the probability given, independently:
What’s the probability that nodes 1 and 4 can communicate?

P(1-4 connected ) = P((A NB)U((CnN D))
=P(ANB)+P(CND)—P(ANBNCND)
\q‘l > o ‘f:ir‘j
P(AnB) =P(A)-P(B) = pq p
P(CNnD)=P(C)-P(D)=rs
P(ANnBNCND)
= P(A) - P(B)-P(C)-P(D) =pqrs

P (1-4 connected) = pg + rs — pqrs




Independence as an assumption

* People often assume it without justification

* Example: A skydiver has two chutes

A: event that the main chute doesn’t open P(A) = 0.02
B: event that the back-up doesn’t open P(B) =0.1

* What is the chance that at least one opens assuming independence? g 7 y %
Yy o

\’ D.02x Q| |--00 & -~

Assuming independence doesn’t justify the assumption!
Both chutes could fail because of the same rare event e.g., freezing rain.
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Independence - Another Look

_____________________________________________________________________________________________________________________________________________________________________

 Definition. Two events A and B are (statistically) independent if
P(ANB) = P(4) - P(B).

_____________________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________

It is important to understand that independence is a property of probabilities of
outcomes, not of the root cause generating these events.

Events generated independently = their probabilities satisfy independence

/N/m necessarily

This can be counterintuitive! 26



Sequential Process Ball drawn

Ur R o . eI
/ = | Setting: An urn contains:
3R3B \ * 3red and 3 blue balls w/ probability 3/5
1/2 2 * 3redand1blue balls w/ probability 1/10
1/10 3/4 ~« 5redand 7 blue balls w/ probability 3/10
3R1B B We draw a ball at random from the urn.
1/4 e
3/10
- >/12 7/12 pry 231} L 3,3 5 1
5R7B T 5°\2 10 "% 10 127 2
Are R and 3R3B independent? == ) -
re R and 3R3B independent:
PT3R3B) X P(R | 3R3B)
- /
- /L

Independent! P(R) = P(R | 3R3B)




i bl 5 F
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Chain Rule
Independence

Infinite process and Von Neumann’s trick

Conditional independence
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Often probability space (), P) is given implicitly via sequential
process

* Experiment proceeds in n sequential steps, each step follows
some local rules defined by the chain rule and independence

* Natural extension: Allows for easy definition of experiments
where ()| = oo
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Fun: Von Neumann’s Trick with a biased coin

* How to use a biased coin to get a fair coin flip:

—Suppose that you have a biased coin:
PH)=p P(T)=1-p

1. Flip coin twice: Ifyouget HH or TT go to step 1

2. Ifyou got HT output H; it you got T'H output T.
NASEY (1Y)

Why isit fair? P(H) = P(HT) =p(1—p)=({1 —p)p = P(TH) = P(T)

Drawback: You may never get to step 2.

31



The sample space for Von Neumann’s trick

* For each round of Von Neumann’s trick we flipped the
biased coin twice.

—If HT or TH appears, the experiment ends:
 Total probability each round: 2p(1 —p) call this

q
/
—If HH or TT appears, the experiment continues:
° HH . 2 . 2 o g .
Total probability each round: p* + (1 —p)“ thisis1—gq

* Probability that flipping ends in round ¢ is (1 — )t t-g

\___—_/ \ >

— Conditioned on ending inround t, P(H) = P(T) = 1/2
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Sequential Process — Example

HTUTH

@(HT U TH)
——

(HH U TT)?(HT U TH)

(HH U TT)3(HT U TH)
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The sample space for Von Neumann’s trick

More precisely, the sample space contains the successful outcomes:
Us={(HH U TT)t_l(I;IT UT

which togethe?ﬁave probability >;72 (1 — q)t‘lg__for qg=2p(1—p)

as well as all of the failing outcomes in (HH U T?)OQ'

Observe thatg # 0iff 0 < p < 1. We have two cases:

e If g # 0then Zt (1 — q)t 1 = 1/q so successful outcomes account
for total probability 1. A

e If g = 0 then either: =
— p = 1and (HH)® has probability 1.
— p = 0and (TT)* has probability 1.
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