CSE 312

Foundations of Computing II

Lecture 5: Conditional Probability and Bayes Theorem

Review Probability

Definition. A sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Single coin flip: $\Omega = \{H, T\}$
- Two coin flips: $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Definition. An **event** $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:

- Getting at least one head in two coin flips:
 E = {HH, HT, TH}
- Rolling an even number on a die:

$$E = \{2, 4, 6\}$$

Review Probability space

Either finite or infinite countable (e.g., integers)

Definition. A (discrete) **probability space** is a pair (Ω, P) where:

- Ω is a set called the **sample space**.
- P is the **probability measure**, a function $P: \Omega \to \mathbb{R}$ such that:
 - $-P(x) \ge 0$ for all $x \in \Omega$
 - $-\sum_{x\in\Omega}P(x)=1$

Some outcome must show up

The likelihood (or probability) of each outcome is non-negative.

Set of possible **elementary outcomes**

$$A \subseteq \Omega$$
: $P(A) = \sum_{x \in A} P(x)$

Specify Likelihood (or probability) of each **elementary outcome**

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples

Conditional Probability (Idea)

What's the probability that someone likes ice cream given they like donuts?

$$\frac{7}{7+13} = \frac{7}{20}$$

Conditional Probability

Definition. The **conditional probability** of event A **given** an event B

happened (assuming
$$P(B) \neq 0$$
) is
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
Instability of Agran B 11

An equivalent and useful formula is

$$P(A \cap B) = P(A|B)P(B)$$

Conditional Probability Examples

Suppose that you flip a fair coin twice.

What is the probability that both flips are heads given that you have at

least one head?

Let *O* be the event that at least one flip is heads Let *B* be the event that both flips are heads

$$P(O) = 3/4 \qquad P(B) = 1/4 \qquad P(B \cap O) = 1/4$$

$$P(B|O) = \frac{P(B \cap O)}{P(O)} = \frac{1/4}{3/4} = \frac{1}{3}$$

Conditional Probability Examples

Suppose that you flip a fair coin twice.

What is the probability that at least one flip is heads given that at least one flip is tails? $P(H \cap T) = P(H \cap T) = V_2$

Let *H* be the event that at least one flip is *heads*

Let *T* be the event that at least one flip is *tails*

P(H/T)=3

Conditional Probability Examples

Suppose that you flip a fair coin twice.

What is the probability that at least one flip is heads given that at least one flip is tails?

Let *H* be the event that at least one flip is *heads* Let *T* be the event that at least one flip is *tails*

$$P(H) = 3/4 P(T) = 3/4 P(H \cap T) = 1/2$$

$$P(H|T) = \frac{P(H \cap T)}{P(T)} = \frac{1/2}{3/4} = \frac{2}{3}$$

Reversing Conditional Probability

Question: Does P(A|B) = P(B|A)?

No!

- Let A be the event you are wet
- Let B be the event you are swimming

$$P(A|B) = 1$$
$$P(B|A) \neq 1$$

Example with Conditional Probability

Suppose we toss a red die and a blue die: both 6 sided and all outcomes equally likely.

What is P(B)? What is P(B|A)?

pollev.com/paulbeameo28

$$P(B)$$
 $P(B|A)$
a) $1/6$ $1/6$ $1/6$ $1/3$
b) $1/6$ $1/3$ $1/3$
c) $1/6$ $1/3$ $1/3$
d) $1/9$ $1/3$ $1/3$
 $1/3$ $1/3$
 $1/3$ $1/3$

Gambler's fallacy

Assume we toss 51 fair coins.

Assume we have seen **50** coins, and they are all "tails".

What are the odds the 51st coin is "heads"?

$$A =$$
first 50 coins are "tails"

$$B = \text{first 50 coins are "tails"}$$

$$B = \text{first 50 coins are "tails"}, 51^{\text{st}} \text{ coin is "heads"}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{1/2^{51}}{2/2^{51}} = \frac{1}{2}$$

51st coin is independent of outcomes of first 50 tosses!

Gambler's fallacy = Feels like it's time for "heads"!?

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples

Bayes Theorem

A formula to let us "reverse" the conditional.

Theorem. (Bayes Rule) For events A and B, where P(A), P(B) > 0,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

P(A) is called the **prior** (our belief without knowing anything) P(A|B) is called the **posterior** (our belief after learning B)

Bayes Theorem Proof

Claim:

$$P(A), P(B) > 0 \implies P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(AB) = P(AB)P(B)$$

$$P(BAA) = P(BA)P(A)$$

$$P(AB) = P(BA)P(A) \cdot P(A)$$

$$P(AB) = P(BA)P(A)$$

$$P(B) \neq O$$

Bayes Theorem Proof

Claim:

$$P(A), P(B) > 0 \implies P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

By definition of conditional probability

$$P(A \cap B) = P(A|B)P(B)$$

Swapping A, B gives

$$P(B \cap A) = P(B|A)P(A)$$

But
$$P(A \cap B) = P(B \cap A)$$
, so
$$P(A|B)P(B) = P(B|A)P(A)$$

Dividing both sides by P(B) gives

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Brain Break

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples

Partitions (Idea)

These events partition the sample space

- 1. They "cover" the whole space
- 2. They don't overlap

Partition

Definition. Non-empty events $E_1, E_2, ..., E_n$ partition the sample space Ω if (Exhaustive)

$$E_1 \cup E_2 \cup \cdots \cup E_n = \bigcup_{i=1}^n E_i = \Omega$$

(Pairwise Mutually Exclusive)

$$\forall_i \forall_{i \neq j} \ E_i \cap E_j = \emptyset$$

Law of Total Probability (Idea)

If we know $E_1, E_2, ..., E_n$ partition Ω , what can we say about P(F)?

Law of Total Probability (LTP)

Definition. If events $E_1, E_2, ..., E_n$ partition the sample space Ω , then for any event F

$$P(F) = P(F \cap E_1) + \dots + P(F \cap E_n) = \sum_{i=1}^{n} P(F \cap E_i)$$

$$P(F) = P(F \cap E_1) + \dots + P(F \cap E_n) = \sum_{i=1}^{n} P(F \cap E_i)$$

Using the definition of conditional probability $P(F \cap E) = P(F|E)P(E)$ We can get the alternate form of this that shows

$$P(F) = \sum_{i=1}^{n} P(F|E_i)P(E_i)$$

Another Contrived Example

Alice has two pockets:

- Left pocket: Two blue balls, two green balls
- Right pocket: One blue ball, two green balls.

Alice picks a random ball from a random pocket.

[Both pockets equally likely, each ball equally likely.]

Sequential Process

- **Left pocket:** Two blue, two green
- Right pocket: One blue, two green

$$1/3 = P(B|Right)$$
 and $2/3 = P(G|Right)$

24

$$P(\mathbf{B}) = P(\mathbf{B} \cap \mathbf{Left}) + P(\mathbf{B} \cap \mathbf{Right}) \qquad \text{(Law of total probability)}$$

$$= P(\mathbf{Left}) \times P(\mathbf{B}|\mathbf{Left}) + P(\mathbf{Right}) \times P(\mathbf{B}|\mathbf{Right})$$

$$= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{3} = \frac{1}{4} + \frac{1}{6} = \frac{5}{12}$$

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples

Example – Zika Testing

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

Tests for diseases are rarely 100% accurate.

Example – Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") P(T|Z)
- However, the test may yield a "false positive" 1% of the time $P(T|Z^c)$
- 0.5% of the US population has Zika. P(Z)

What is the probability you have Zika (event Z) if you test positive (event T).?