
CSE 312: Foundations of Computing II Autumn 2022

Problem Set 9
Due: Friday, December 9, by 11:59pm. (No extensions / late days allowed)

Instructions

Solutions format, collaboration policy, and late policy. See PSet 1 for further details. The same requirements
and policies still apply. Also follow the typesetting instructions from the prior PSets.

Solutions submission. You must submit your solution via Gradescope. In particular:

- For the solutions to Tasks 1-4, and the written part of Task 5, submit under “PSet 9 [Written]” a single
PDF file containing the solution to all tasks in the PSet. Each numbered task should be solved on its own
page (or pages).

- For the programming part (sub-task c) of Task 5), submit your code under “PSet 9 [Coding]” as a file
called mcmc knapsack.py.

- Submit your optional solution to Extra Credit Task 6 under“PSet 9 [Extra]”.

Task 1 – It is with a Heavy Tail [16 pts]

All of the continuous distributions we have considered so far are either non-zero only on a finite range or, like
the normal or exponential distributions, have densities that go to 0 exponentially quickly in x. It turns out that
many quantities (and hence random variables) that we observe in practice display a ”heavy tailed” behavior in

that the probability density function at x is behaves roughly like 1{xc rather than roughly 1{ex of 1{ex
2

{2. It
isn’t hard to show that we need c ą 1 for this to work. Using α ` 1 instead of c for α ą 0, we note that
ş8

1
x´α´1dx “ ´1

α ¨ x´α
ˇ

ˇ

ˇ

8

1
“ 0 ´ ´1

α “ 1
α and hence the following is a probability density function.

fpx;αq “

#

α
xα`1 for x ě 1

0 otherwise

a) If random variable P has pdf fP pxq “ fpx;αq for α ą 0, compute ErP s. You will need different cases
depending on whether α is greater than 1, equal to 1, or less than 1.

b) You are given i.i.d. samples x1, x2, . . . , xn from the distribution given by f with parameter α. Find the MLE
for α.

Task 2 – Uniform Distribution [24 pts]

Let x1, x2, . . . , xn be independent samples from Unifp0, θq, the continuous uniform distribution on r0, θs. Here, θ
is the unknown parameter.

a) Write down the likelihood function Lpx1, . . . , xn ; θq.

b) Explain why θ̂ “ maxtx1, . . . , xnu is the MLE estimator for θ.

To this end, explain why this value of θ̂ maximizes Lpx1, x2, . . . , xn ; θq directly, by describing the behavior
of the likelihood function (as a function of θ) and inferring the maximum from this description, rather than
trying to use calculus.
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c) For the remaining parts of this question we suppose that this uniform distribution is on r0, θs for a particular
fixed θ ą 0, and let

Θ̂n “ θ̂pX1, . . . , Xnq “ maxtX1, . . . , Xnu

be a random variable, where X1, . . . , Xn are independent and follow the uniform distribution on r0, θs.

Compute the CDF FΘ̂n
pxq.

Hint: Focus first on the interval 0 ď x ď θ, but when you’re done with that, don’t forget to also define
FΘ̂n

pxq on the rest of the real numbers.

d) From your answer to c) compute the probability density function fΘ̂n
pxq of Θ̂.

e) From your answer to d), compute E
”

Θ̂n

ı

. Why is θ̂ not an unbiased estimator of θ?

f) Starting from the value of E
”

Θ̂n

ı

you computed in e), show how to make a small modification to the MLE

studied so far to produce an unbiased estimator of θ and explain why it is unbiased.

Note: There also are other unbiased estimators of θ, but we want you to produce one that directly uses what
you have inferred in e).

Task 3 – Markov Chains [18 pts]

In this problem we will explore the Markov chain shown in the following figure:

1 2
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a) Give the transition probability matrix (TPM) M of the Markov chain in the above figure.

b) Recall that Xptq denotes the state of the Markov chain in the t-th step. Use the law of total probability to
compute P

`

Xp2q “ 4 | Xp0q “ 1
˘

. Show your work.

c) Suppose that the initial state is uniformly distributed, i.e., we represent its distribution through the vector

qp0q “

„

1

4
,
1

4
,
1

4
,
1

4

ȷ

.

Compute qp0qM, the vector-matrix-product of qp0q and the TPM M as 4 simplified fractions.

Describe what each component of qp0qM represents.

d) Find the stationary distribution of the Markov chain, i.e., find a probability distribution π such that πM “ π.

Task 4 – Random Walk Analysis [14 pts]

The following figure depicts undirected graph with 5 nodes.
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A random walk on this graph is a Markov chain whose states are the nodes of this graph. If we are at a particular
node i in the graph at some time step, then in the following time step, we will transition to each of its neighbors
with equal probability. So if it has one neighbor, we transition there with probability 1. If it has 3 neighbors, we
transition to each of those with probability 1/3, and so on.

a) Consider now a random walk on the above graph. Give the transition probability matrix of the corresponding
Markov chain.

b) Consider a random walk on an undirected graph with n vertices and m edges, where the degree of vertex i
is di. (The degree of a vertex is the number of neighbors it has in the graph. So in the graph above, for
example, d1 “ 3 and d4 “ 2.) Prove that a stationary distribution π “ rπ1, . . . , πns of the random walk is
given by

πi “
di
2m

for all i P rns.

Note that this is equivalent to showing that if πi “ di

2m for all i then

‚ π “ πM and

‚
řn

i“1 πi “ 1

where M is the transition probability matrix of the Markov chain.

This shows, for example, that for the random walk on the graph shown above

π “

„

3

14
,
4

14
,
2

14
,
2

14
,
3

14

ȷ

.

However, make sure your proof that πi “ di

2m works for an arbitrary undirected graph, and not just for our
specific Markov Chain.

Hint: You can use the fact that
řn

i“1 di “ 2m since the sum counts each edge twice, once from each end.

Task 5 – Knapsacks (Coding) [28 pts]

Markov Chain Monte Carlo (MCMC) is a technique that can be used to heuristically and approximately solve
otherwise hard optimization problems (among other things). The general strategy is as follows:

1. Define a Markov Chain with states being possible solutions, and (implicitly defined) transition probabilities
that result in the stationary distribution π having higher probabilities on “good” solutions to our problem.
We don’t actually compute π, but we just want to define the Markov Chain such that the stationary
distribution would have higher probabilities on more desirable solutions.

2. Run MCMC, i.e., simulate the Markov Chain for many iterations until we reach a “good” state/solution.
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In this question, there is a collection of n items, numbered 0 to n´1, available to us, and each has some value and
some weight, both of which are positive real values. We want to find the optimal subset of items that maximizes
the total value (the sum of the values of the items we take), subject to the total weight (the sum of the weights
of the items we take) being less than some W ą 0. (This is known as the knapsack problem). In items.txt,
you’ll find a list of potential items with each row containing the name of the item (string), and its value and
weight (positive floats).
You will implement an MCMC algorithm which also depends on a parameter T that is not part of the problem
definition. Pseudocode is provided below, and a detailed explanation is provided immediately after.

Algorithm 1 MCMC for 0-1 Knapsack Problem

1: subset Ð vector of n zeros (indexed by 0 to n ´ 1), where subset is always a binary vector in t0, 1un that
represents whether or not we have each item. (This means that we initially start with an empty knapsack).

2: best subset Ð subset
3: for t “ 1, . . . ,NUM ITER do
4: k Ð a random uniform integer in t0, 1, . . . , n ´ 1u.
5: new subset Ð subset but with subsetrks flipped (0 Ñ 1 or 1 Ñ 0).
6: ∆ Ð valuepnew subsetq ´ valuepsubsetq
7: if new subset satisfies weight constraint (total weight ď W ) then
8: if ∆ ą 0 OR (T ą 0 AND Unifp0, 1q ă e∆{T ) then
9: subset Ð new subset

10: if valuepsubsetq ą valuepbest subsetq then
11: best subset Ð subset

The extra parameter T in the MCMC algorithm represents a “temperature” that controls the trade-off between
exploration and exploitation. The state space S is the set of all subsets of n items. The algorithm starts with
a state (current subset) corresponding to an empty knapsack. At each iteration, the algorithm proposes a new
state (proposed subset) as follows: choose a random index k from t0, 1, . . . , n ´ 1u. If the item k is not already
in the knapsack (current subset), then this proposed subset will just add item k, but if item k is already in the
knapsack (current subset), the proposed subset will just remove item k from the knapsack (current subset).

- If the proposed subset is infeasible (doesn’t fit in our knapsack because of the weight constraint), we return
to the start of the loop and abandon the newly proposed subset.

- Suppose that the proposed subset is feasible. If the proposed subset has higher total value (is better) than
the current subset, we will always transition to it (exploitation). Otherwise, if it is worse and T ą 0, with
probability e∆{T , we update the current subset to the proposed subset, where ∆ ă 0 is the decrease in
total value. This allows us to transition to a “worse” subset occasionally (exploration), and get out of local
optima! Repeat this for NUM ITER transitions from the initial state (subset), and output the highest value
subset found during the entire process (which may not be the final subset).

a) What is the size of the Markov Chain’s state space S (the number of possible subsets)?

b) Let’s try to figure out what the temperature parameter T does.

A. Suppose that T “ 0. Will we ever get to a worse subset than before as we transition?

B. Suppose that T ą 0.

i. For a fixed T , does the probability of transitioning to a worse subset increase or decrease with larger
absolute values of ∆ (larger absolute values means “more negative” values, since ∆ ă 0)?

ii. For a fixed ∆, does the probability of transitioning to a worse subset increase or decrease with larger
values of T?

iii. Explain briefly how the temperature parameter T controls the degree of exploration we do.
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c) Implement the functions value, weight, and mcmc in mcmc knapsack.py. To this end, you will use the
edstem lesson. Remember that only code submitted via Gradescope will be graded.

Hints: To get full score, you must use np.random.rand() to generate an uniform value in r0, 1s, and
np.random.randint(low (inclusive), high (exclusive)) to generate your random index(es). Make sure to read
the documentation and hints provided!

One item that is not required or graded that we’ve included in the lesson for your interest is that we have
called the make plot function to make a plot where the x-axis is the iteration number, and the y-axis is the
current knapsack value (not necessarily the current best), for ntrials=10 different runs of MCMC. The plots yield
interesting phenomena - for example one can imagine tuning things to choose T that will most reliably produce
high knapsack values.

Task 6 – Extra Credit: Let’s Make a Hash of it

Suppose that you are planning to store a set of k-bit integers using a hash table of size n. Let N “ 2k. (There
is nothing special about this choice.)

Hash Function: Fix a prime number p that is at least N . (From number theory, we know that there is at least
one prime number between N and 2N .) Choose your hash function at random using the following procedure:

- Choose an integer a such that 1 ď a ď p´1 uniformly at random. Then, independent from the first choice,
choose an integer b such that 0 ď b ď p ´ 1 uniformly at random.

- The hash function is then
hpxq “ ppa ¨ x ` bq mod pq mod n.

Show that for any two distinct k bit integers x ‰ y

Pphpxq “ hpyqq ď
2

n
.

Note that the probability here is over the random choice of a and b. You may use without proof the facts:

1. From CSE 311: If gcdpz, pq “ 1, for each c there is a unique solution a modulo p of a ¨ z ” c pmod pq

2. For any two numbers s, t P t0, 1, 2, . . . , p ´ 1u, and any x ‰ y P t0, 1, 2, . . . , p ´ 1u, there is a unique pair
0 ď a ď p ´ 1 and 0 ď b ď p ´ 1 such that

s “ pa ¨ x ` bq mod p and t “ pa ¨ y ` bq mod p,

which follows by applying the first fact to z “ x ´ y.
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