Chapter 2. Discrete Probability

2.1: Intro to Discrete Probability
Slides (Google Drive) Video (YouTube)
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We're just about to learn about the axioms (rules) of probability, and see how all that counting stuff from
chapter 1 was relevant at all. This should align with your current understanding of probability (I only assume
you might be able to tell me the probability I roll an even number on a fair six-sided die at this point), and
formalize it.

We'll be using a lot of set theory from here on out, so review that in Chapter 0 if you need to!

2.1.1 Definitions

Definition 2.1.1: Sample Space

The sample space is the set € of all possible outcomes of an experiment.

Example(s)

Find the sample space of...
1. a single coin flip.
2. two coin flips.
3. the roll of a fair 6-sided die.

Solution
1. The sample space of a single coin flip is: Q@ = {H, T} (heads or tails).
2. The sample space of two coin flips is: Q@ = {HH,HT,TH,TT}.
3. The sample space of the roll of a die is: Q = {1,2,3,4,5,6}.

|

Definition 2.1.2: Event

An event is any subset F C ).

Example(s)

List out the set of outcomes for the following events:
1. Getting at least one head in two coin flips.
2. Rolling an even number on a fair 6-sided die.

Solution
1. Getting at least one head in two coin flips: E = {HH,HT,TH}
2. Rolling an even number: E = {2,4,6}

44
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Definition 2.1.3: Mutual Exclusion

|

Events F and F are mutually exclusive if E N F = (). (i.e. they can’t simultaneously happen).

Example(s)

Say E is the event of rolling an even number: F = {2,4,6}, and F' is the event of rolling an odd
number: F = {1,3,5}. Are E and F mutually exclusive?

O

Solution E and F' are mutually exclusive because E N F = ().
Example(s)

Let’s consider another example in which our experiment is the rolling of two fair 4-sided dice,
one which is blue D1 and one which is red D2 (so they are distinguishable, or effectively, order
matters). We can represent each element in the sample set as an ordered pair (D1, D2) where
D1,D2 € {1,2,3,4} and represent the respective value rolled by the blue and red die.

The sample space 2 is the set of all possible ordered pairs of values that could be rolled by
the die (|Q] =4 -4 = 16 by the product rule). Let’s consider some events:
1. A={(1,1),(1,2),(1,3),(1,4)}, the event that the blue die, D1 is a 1.
2. B={(2,4),(3,3),(4,2)}, the event that the sum of the two rolls is 6 (D1 + D2 = 6).
3. C =1{(2,1),(4,2)}, the event that the value on the blue die is twice the value on the red die
(D1 =2xD2).
All of these events and the sample space are shown below:
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Solution Now, let’s consider whether A and B are mutually exclusive. Well, they do not overlap, as we can
see that AN B = (), so yes they are mutually exclusive.

B and C are not mutually exclusive, since there is a case in which they can happen at the same time
BnC ={(4,2)} # 0, so they are not mutually exclusive. d

Again, to summarize, we learned that € was the sample space (set of all outcomes of an experiment), and



46 Probability & Statistics with Applications to Computing 2.1

E C Q is just a subset of outcomes we are interested in.

2.1.2 Axioms of Probability and their Consequences

Definition 2.1.4: Axioms of Probability and their Consequences

Let © denote the sample space and E, F' C Q) be events.
Axioms:
1. (Nonnegativity) P (E) > 0; that is, no event has a negative probability.
2. (Normalization) P () = 1; that is, the probability of the entire sample space is always 1
(something is guaranteed to happen)
3. (Countable Additivity) If E and F are mutually exclusive, then P(EUF) =P (E)+P (F). This
actually holds for any countable (finite or countably infinite) collection of pairwise mutually
exclusive events Fq, Fo, E3, . ...

P (G Ei) = iP(Ei)
i=1 =1

The word “axiom” means: things that we take for granted and assume to be true without proof.
Corollaries:

1. (Complementation) P (EC) =1 —P (E).

2. (Monotonicity) If E C F, then P(E) <P (F).

3. (Inclusion-Exclusion) P(EUF) =P (E)+P(F) —P(ENF).
The world “corollary” means: results that follow almost immediately from a previous result (in this
case, the axioms).

Explanation of Axioms

1. Non-negativity is simply because we cannot consider an event to have a negative probability. It just
wouldn’t make sense. A probability of 1/6 would mean that on average, something would happen 1
out of every 6 trials. What about a probability of —1/47?

2. Normalization is based on the fact that when we run an experiment, there must be some outcome, and
all possible outcomes are in the sample space. So, we say the probability of observing some outcome
from the sample space is 1.

3. Countable additivity is because if two events are mutually exclusive, they don’t overlap at all; that is,
they don’t share any outcomes. This means that the union of them will contain the same outcomes of
each together, so the probability of their union is the the sum of their individual probabilities. (This
is like the sum role of counting).

Explanation of Corollaries

1. Complementation is based on the fact that the sample space is all the possible outcomes. This means
that E =Q\ E, so P(EY) =1—P(E). (This is like complementary counting).

2. Monotonocity is because if E is a subset of F, then all outcomes in the event E are in the event F'.
This means that all the outcomes that contribute to the probability of E contribute to the probability
of F, so it’s probability is greater than or equal to that of E (since probabilities are non-negative).

3. Inclusion-Exclusion follows because if £ and F' have some intersection, this would be counted twice
by adding their probabilities, so we have to subtract it once to only count it once and not overcount.
(This is like inclusion-exclusion for counting).
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Proof of Corollaries. The proofs of these corollaries only depend on the 3 axioms which we assume to be
true.

1. Since E and E¢ = Q\ E are mutually exclusive,

P(E)+P(EY) =P (EUE") [axiom 3]
=P (Q) [EUE® =Q]
=1 [axiom 2]

Now just subtract P (E) from both sides.
2. Since E C F, consider the sets E and F \ E. Then,

P(F)=P(FEU(F\E)) [draw a picture of E inside event F|
=P(E)+P(F\E) [mutually exclusive, axiom 3]
>P(E)+0 [since P (F'\ E) > 0 by axiom 1]

3. Left to the reader. Hint: Draw a picture.

2.1.3 Equally Likely Outcomes

Now we’ll see why counting was so useful. We can compute probabilities in the special case where each
outcome is equally likely (e.g., rolling a fair 6-sided die has each outcome in Q = {1,2,...,6} equally likely).
If events are equally likely, then in determining probabilities, we only care about the number of outcomes
that are in an event. That let’s us conclude the following:

Theorem 2.1.4: Probability in Sample Space with Equally Likely Outcomes

If © is a sample space such that each of the unique outcome elements in €2 are equally likely, then
for any event E C Q:

Proof of Equally Likely Outcomes Formula. If outcomes are equally likely, then for any outcome in the

1
sample space w € ), we have P (w) = ol (since there are || total outcomes). Then, if we list the |F]|

L

outcomes that make up event F, we can write
E = {wl,w2, e ,UJ|E|}

Every set is the union of the (mutually exclusive) singleton sets containing each element (e.g., {1,2,3} =
{1} U {2} U {3}), and so by countable additivity, we get

22 |E|
P U {wi} ]| = Z P ({w;}) [countable additivity axiom]
i=1 i=1
|E| 1
= Z [ [equally likely outcomes]
i=1
E|

= — [sum constant |E| times]
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The notation in the first line is like summation or product notation: just union all the sets {w1} U {w2} U
ey {leI}

If we flip two fair coins independently, what is the probability we get at least one head?

Solution Since the sample space @ = {HH, HT,TH,TT} is such that events are equally likely and the event
of getting at least one head is E = {HH,HT,TH}, we can say that

E 3

Consider the example of rolling the red and blue fair 4-sided dice again (above), a blue die D1 and a
red die D2. What is the probability that the two die’s rolls sum up to 67

Solution We called that event B = {(2,4), (3,3), (4,2)}. What is the probability of the event B happening?

Well, the 16 possible outcomes that make up all the elements of €2 are each equally likely because each die

has an equal chance of landing on any of the 4 numbers. So, P(E) = @ = 3. 50 the probability is 13—6. |

| = 167

2.1.4 Exercises

1. If there are 5 people named A, B, C, D, and E, and they are randomly arranged in a row (with each
ordering equally likely), what is the probability that A and B are placed next to each other?

Solution: The size of the sample space is the number of ways to organize 5 people randomly, which
is |Q2] = 5! = 120. The event space is the number of ways to have A and B sit next to each other. We
did a similar problem in 1.1, and so the answer was 2! - 4! = 48 (why?). Hence, since the outcomes are

E 4
equally likely, P (E) = H = %

2. Suppose I draw 4 cards from a standard 52-card deck. What is the probability they are all aces (there
are exactly 4 aces in a deck)?

Solution: There are two ways to define our sample space, one where order matters, and one where
it doesn’t. These two approaches are equivalent.

(a) If order matters, then |Q] = P(52,4) = 52-51-50-49, as the number of ways to pick 4 cards out
of 52. The event space FE is the number of ways to pick all 4 aces (with order mattering), which

E P(52,4
is P(4,4) =4-3-2-1. Hence, since the outcomes are equally likely, P (E) = H = P((T,,él)) =
4-3-2-1
52-51-50-49
(b) If order does not matter, then | = (542), since we just care which 4 out of 52 cards we get.

Then, there is only (i) = 1 way to get all 4 aces, and, since the outcomes are equally likely,
Bl () PG4/ 4-3.2-1
QT () T P@A.4)/47 ~ 52.51-50-49°

P (E)
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Notice how it did not matter whether order mattered or not, but we had to be consistent! The 4!
accounting for the ordering of the 4 cards gets cancelled out :).

3. Given 3 different spades (S) and 3 different hearts (H), shuffle them. Compute P (E), where FE is the
event that the suits of the shuffled cards are in alternating order (e.g., SHSHSH or HSHSHS)

Solution: The sample space || is the number of ways to order the 6 (distinct) cards: 6!. The

number of ways to organize the three spades is 3! and same for the three hearts. Once we do that, we

either lead with spades or hearts, so we get 2 - 3!2 for the size of our event space E. Hence, since the
|E|  2-32

Qe

Note that all of these exercises are just counting two things! We count the size of the sample space, then
the event space and divide them. It is very important to acknowledge that we can only do this when the
outcomes are equally likely.

outcomes are equally likely, P (E)

You can see how we can get even more fun and complicated problems - the three exercises above displayed
counting problems on the “easier side”. The reason we didn’t give “harder” problems is because computing
probability in the case of equally likely outcomes reduces to doing two counting problems (counting |E| and
||, where computing || is generally easier than computing |E|). Just use the techniques from Chapter 1
to do this!
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2.2: Conditional Probability
Slides (Google Drive) Video (YouTube)

2.2.1 Conditional Probability

Sometimes we would like to incorporate new information into our probability. For example, you may be
feeling symptoms of some disease, and so you take a test to see whether you have it or not. Let D be the
event you have a disease, and T be the event you test positive (T is the event you test negative). It could
be that P (D) = 0.01 (1% chance of having the disease without knowing anything). But how can we update
this probability given that we tested positive (or negative)? This will be written as P(D | T) or P (D | T)
respectively. You would think P (D | T') > P (D) since you're more likely to have the disease once you test
positive, and P (D | TC) < P (D) since you're less likely to have the disease once you test negative. These
are called conditional probabilities - they are the probability of an event, given that you know some other
event occurred. Is there a formula for updating P (D) given new information? Yes!

Let’s go back to the example of students in CSE312 liking donuts and ice cream. Recall we defined event
A as liking ice cream and event B as liking donuts. Then, remember we had 36 students that only like ice
cream (AN BY), 7 students that like donuts and ice cream (AN B), and 13 students that only like donuts
(BN A%). Let’s also say that we have 14 students that don’t like either (A“ N BY). That leaves us with the
following picture, which makes up the whole sample space:

A A B Q
—

Now, what if we asked the question, what’s the probability that someone likes ice cream, given that we
know they like donuts? We can approach this with the knowledge that 20 of the students like donuts (13
who don’t like ice cream and 7 who do). What this question is getting at, is: given the knowledge that
someone likes donuts, what is the chance that they also like ice cream? Well, 7 of the 20 who like donuts
like ice cream, so we are left with the probability . We write this as P (A | B) (read the “probability of A
given B”) and in this case we have the following;:

50
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7
P(A|B) = %

ANB

= | i | [|B| = 20 people like donuts, |A N B| = 7 people like both]
ANB|/|Q

= ﬁ [divide top and bottom by ||, which is equivalent]
P(ANB) . .

T P(B) [if we have equally likely outcomes]

This intuition (which worked only in the special case equally likely outcomes), leads us to the definition of
conditional probability:

Definition 2.2.1: Conditional Probability

The conditional probability of event A given that event B happened is:

P (AN B)

P(A]B) =55

An equivalent and useful formula we can derive (by multiplying both sides by the denominator, P (B),
and switching the sides of the equation is:

P(ANB)=P(A|B)P(B)

Let’s consider an important question: does P(A | B) =P (B | A)? No!

This is a common misconception we can show with some examples. In the above example with ice cream,

we showed already P (A | B) = 55, but P (B | A) = 5=, and these are not equal.

Consider another example where W is the event that you are wet and S is the event you are swimming.
Then, the probability you are wet given you are swimming, P (W | S) = 1, as if you are swimming you are
certainly wet. But, the probability you are swimming given you are wet, P (S | W) # 1, because there are
numerous other reasons you could be wet that don’t involve swimming (being in the rain, showering, etc.).
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2.2.2 Bayes Theorem

This brings us to Bayes Theorem:

Theorem 2.2.5: Bayes Theorem

Let A, B be events with nonzero probability. Then,

a1 3y = HELAP A

Note that in the above PP (A) is called the prior, which is our belief without knowing anything about
event B. P (A | B) is called the posterior, our belief after learning that event B occurred.

This theorem is important because it allows to “reverse the conditioning”! Notice that both P (A | B)
and P (B | A) appear in this equation on opposite sides. So if we know P (A) and P (B) and can more
easily calculate one of P (A | B) or P(B | A), we can use Bayes Theorem to derive the other.

. J

Proof of Bayes Theorem. Recall the (alternate) definition of conditional probability from above:

P(ANB)=P(A|B)P(B) (2.2.6)

Swapping the roles of A and B we can also get that:
P(BNA)=P(B|AP(A) (2.2.7)

But, because AN B = BN A (since these are the outcomes in both events A and B, and the order of
intersection does not matter), P(ANB) = P(BNA), so (2.2.1) and (2.2.2) are equal and we have (by
setting the right-hand sides equal):

P(A|B)P(B) =P (B | A)P(A)

We can divide both sides by P (B) and get Bayes Theorem:

P(A|B)= —P(BIEL?;;P(A)

Wow, I wish T was alive back then and had this important (and easy to prove) theorem named after me!
|

Example(s)

We'll investigate two slightly different questions whose answers don’t seem that they should be differ-
ent, but are. Suppose a family has two children (whom at birth, were each equally likely to be male
or female). Let’s say a telemarketer calls home and one of the two children picks up.
1. If the child who responded was male, and says “Let me get my older sibling”, what is the
probability that both children are male?
2. If the child who responded was male, and says “Let me get my other sibling”, what is the
probability that both children are male?

Solution There are four equally likely outcomes, MM, MF, FM, and FF (where M represents male and F
represents female). Let A be the event both children are male.
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1. In this part, we’re given that the younger sibling is male. So we can rule out 2 of the 4 outcomes
above and we're left with MF and MM. Out of these two, in one of these cases we get MM, and so our
desired probability is 1/2.

More formally, let this event be B, which happens with probability 2/4 (2 out of 4 equally likely
P(ANB 1/4 1
outcomes). Then, P(A|B) = % = ﬁ =3 since P(A N B) is the probability both children
are male, which happens in 1 out of 4 equally likely scenarios. This is because the older sibling’s sex
is independent of the younger sibling’s, so knowing the younger sibling is male doesn’t change the
probability of the older sibling being male (which is what we computed just now).

2. In this part, we're given that at least one sibling is male. That is, out of the 4 outcomes, we can only
rule out the FF option. Out of the remaining options MM, MF, and FM, only one has both siblings
being male. Hence, the probability desired is 1/3. You can do a similar more formal argument like we
did above!

See how a slight wording change changed the answer? O

We'll see a disease testing example later, which requires the next section first. If you test positive for a
disease, how concerned should you be? The result may surprise you!

2.2.3 Law of Total Probability

Let’s say you sign up for a chemistry class, but are assigned to one of three teachers randomly. Furthermore,
you know the probabilities you fail the class if you were to have each teacher (from historical results, or
word-of-mouth from classmates who have taken the class). Can we combine this information to compute the
overall probability that you fail chemistry (before you know which teacher you get)? Yes - using the law of
total probability below! We first need to define what a partition is.

Definition 2.2.2: Partitions

Non-empty events Fi, ..., F, partition the sample space ( if they are:
e (Exhaustive) £y UE,U---UE, = U?:l E; = Q; that is, they cover the entire sample space.
¢ (Pairwise Mutually Exclusive) For all ¢ # j, E; N Ej = (; that is, none of them overlap.
Note that for any event E, E and E€ always form a partition of Q.

Example(s)

Two example partitions can be seen in the image below:

Ey E, E; 4

Q0 Q

You can see that partition is a very appropriate word here! In the first image, the four events
Ei,...,E, don’t overlap and cover the sample space. In the second image, the two events E, E¢ do
the same thing! This is useful when you know ezxactly one of a few things will happen. For example,
for the chemistry example, there might be only three teachers, and you will be assigned to exactly
one of them: at most one because you can’t have two teachers (mutually exclusive), and at least one
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because there aren’t other teachers possible (exhaustive).

Now, suppose we have some event F' which intersects with various events that form a partition of 2. This
is illustrated by the picture below:

9)

Notice that F' is composed of its intersection with each of Fy, Fs, and E3, and so we can split F' up into
smaller pieces. This means that we can write the following (green chunk F'N E4, plus pink chunk F'N Ey
plus yellow chunk F'n Ej3):

P(F)=P(FNE)+P(FnEy)+P(FnNE;s)

Note that F and E; do not intersect, so F N E; = (). For completion, we can include E, in the above
equation, because P (F' N E4) = 0. So, in all we have:

P(F)=P(FNE)+P(FNEy)+P(FNE3)+P(FNEy)

This leads us to the law of total probability.
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Theorem 2.2.6: Law of Total Probability (LTP)

If events F, ..., E, partition €, then for any event F'

IP(F):P(FmE1)+---+]P>(FmEn):zn:]P(FmEn)

i=1

Using the definition of conditional probability, P (F N E;) = P(F | E;) P(E;), we can replace each of
the terms above and get the (typically) more useful formula:

P(F):P(F|El)P(E1)+"'+P(F|En)P(En):iP(F|Ei)P(Ei)

=1

That is, to compute the probability of an event F' overall; suppose we have n disjoint cases F1, ..., E,
for which we can (easily) compute the probability of F' in each of these cases (P(F|E;)). Then, take
the weighted average of these probabilities, using the probabilities P(E;) as weights (the probability
of being in each case).

Example(s)

Let’s consider an example in which we are trying to determine the probability that we fail chemistry.
Let’s call the event F' failing, and consider the three events F; for getting the Mean Teacher, E5 for
getting the Nice Teacher, and E3 for getting the Hard Teacher which partition the sample space. The
following table gives the relevant probabilities:

Mean Teacher Fy | Nice Teacher F5 | Hard Teacher F3
Probability of Teaching You P (E;) 6/8 1/8 1/8

Probability of Failing You P (F | E;) | 1 0 1/2

Solve for the probability of failing.

Solution Before doing anything, how are you liking your chances? There is a high probability (6/8) of getting
the Mean Teacher, and she will certainly fail you. Therefore, you should be pretty sad.

Now let’s do the computation. Notice that the first row sums to 1, as it must, since events Ei, o, F3
partition the sample space (you have exactly one of the three teachers). Using the Law of Total Probability
(LTP), we have the following:

3

n 11 13

2 8 16
Notice to get the probability of failing, what we did was: consider the probability of failing in each of the
3 cases, and take a weighted average of using the probability of each case. This is exactly what the law of
total probability lets us do!

You might consider using the LTP when you know the probability of your desired event in O
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Misfortune struck us and we ended up failing chemistry class. What is the probability that we had
the Hard Teacher given that we failed?

Solution First, this probability should be low intuitively because if you failed, it was probably due to the
Hard Teacher (because you are more likely to get them, AND because they have a high fail rate of 100%).

Start by writing out in a formula what you want to compute; in our case, it is P (E5 | F') (getting the hard
teacher given that we failed). We know P (F' | E5) and we want to solve for P (Es3 | F'). This is a hint to use
Bayes Theorem since we can reverse the conditioning! Using that with the numbers from the table and the
previous question:

P(F | E3)P(E3)

[bayes theorem)]

(SIS
ool

2.2.4 Bayes Theorem with the Law of Total Probability

Oftentimes, the denominator in Bayes Theorem is hard, so we must compute it using the LTP. Here, we just
combine two powerful formulae: Bayes Theorem and the Law of Total Probability:

Theorem 2.2.7: Bayes Theorem with the Law of Total Probability

Let events Eq, ..., E, partition the sample space 2, and let F' be another event. Then:

F | E)P(E;)
P (F)
P(F | E)P(E)

= S P(F | B)P(E) [by the law of total probability]
1=1 7 7

P
P(E, | F)= ( [by bayes theorem]

In particular, in the case of a simple partition of Q into E and EC, if F is an event with nonzero
probability, then:

P(F|E)P(E)
P(F)
_ P(F|E)P(E)
" P(F|E)P(E)+P(F|E°)P(EO)

P(E|F)= [by bayes theorem]

[by the law of total probability]

2.2.5 Exercises

1. Suppose the llama flu disease has become increasingly common, and now 0.1% of the population has
it (1 in 1000 people). Suppose there is a test for it which is 98% accurate (e.g., 2% of the time it will
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give the wrong answer). Given that you tested positive, what is the probability you have the disease?
Before any computation, think about what you think the answer might be.

Solution: Let L be the event you have the llama flu, and T be the event you test positive (T'¢ is
the event you test negative). You are asked for P (L | T'). We do know P (T | L) = 0.98 because if you
have the llama flu, the probably you test positive is 98%. This gives us the hint to use Bayes Theorem!

We get that

P L)P(L)
P(L|T)= —F-—"—
We are given P (T | L) = 0.98 and P (L) = 0.001, but how can we get P (7T'), the probability of testing
positive? Well that depends on whether you have the disease or not. When you have two or more
cases (L and L), that’s a hint to use the LTP! So we can write

P(T)=P(T|L)P(L)+P (T | L°)P (L)

Again, interpret this as a weighted average of the probability of testing positive whether you had llama
flu P(T | L) or not P (T | LY), weighting by the probability you are in each of these cases P(L) and
P (LY). We know P (L) = 0.999 since these P (LY) = 1 — P (L) (axiom of probability). But what
about P (T | LC)? This is the probability of testing positive given that you don’t have llama flu, which
is 0.02 or 2% (due to the 98% accuracy). Putting this all together, we get:

P(T|L)P(L
P(LI|T)= PETIL)PL) IE|”(1)“) () [bayes theorem)]
_ P(T|L)P(L)
 P(T|L)P(L)+P(T|LC)P(LC) [LTP]
_ 0.98 - 0.001
~0.98-0.001 + 0.02 - 0.999
~ 0.046756

Not even a 5% chance we have the disease, what a relief! But wait, how can that be? The test
is so accurate, and it said you were positive? This is because the prior probability of having the
disease P (L) was so low at 0.1% (actually this is pretty high for a disease rate). If you think about
it, the posterior probability we computed P (L | T) is 47x larger than the prior probability P (L)
(P(L|T)/P(L)~0.047/0.001 = 47), so the test did make it a lot more likely we had the disease after
all!

2. Suppose we have four fair die: one with three sides, one with four sides, one with five sides, and one
with six sides (The numbering of an n-sided die is 1,2, ...,n). We pick one of the four die, each with
equal probability, and roll the same die three times. We get all 4’s. What is the probability we chose
the 5-sided die to begin with?

Solution: Let D; be the event we rolled the i-sided die, for ¢ = 3,4,5,6. Notice that these
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D3, Dy, D5, Dg partition the sample space.

P(444|Ds5)P(Ds)
P(444) [by bayes theorem)]

P(Ds|444) =

~ P(444|D3)P(D3) + P(444|D4)P(D4) + P (444 D5)P(D5) + P(444|Dg) P (D) v P

©1/64+1/125+1/216
1728

= —— ~0.2831
6103 0283

Note that we compute P(444|D;) by noting there’s only one outcome where we get (4,4,4) out of the
i3 equally likely outcomes. This is true except when i = 3, where it’s not possible to roll all 4’s.




