
CSE 312: Foundations of Computing II Summer 2020

Lecture 5.5: Convolution
Lecturer: Alex Tsun Monday, July 27th Scribe: Pemi Nguyen

5.5.1 Law of Total Probability for Random Variables

Definition 5.5.1.1: Law of Total Probability for Random Variables

Discrete version: If X, Y are discrete random variables:

pX(x) =
∑
y

pX,Y (x, y) =
∑
y

pX|Y (x|y)pY (y)

Continuous version: If X, Y are continuous random variables:

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy =

∫ ∞
−∞

fX|Y (x|y)fY (y)dy

Examples

Let X,Y ∼ Unif(1, 4) be independent rolls of a fair 4-sided die. What is the PMF of Z = X + Y ?
Well we know that for the range of Z we have the following, since it is the sum of two values each in
the range {1, 2, 3, 4}:

ΩZ = {2, 3, 4, 5, 6, 7, 8}

To solve for the probability mass function we can consider the probability of getting each pair of X
and Y that sum up to some value, but this would be complicated to consider all the cases of, so
instead we can rewrite this in terms of probabilities of X and Y (since Y = Z −X), which we know
both of the probability mass functions for. Then because X and Y are independent, we can separate
this. So we have the following:

pZ(z) = P (Z = z)

=
∑
x∈Ωx

P (X = x, Y = z − x)

=
∑
x∈Ωx

P (X = x)P (Y = z − x)

=
∑
x∈Ωx

pX(x)pY (z − x)
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Examples

Now let’s consider the continuous case. What if X and Y are continuous RVs with respective proba-
bility and cummulative density functions fX , FX , fY and FY . If we define Z = X + Y , then how can
we solve for the probability density function for Z, fZ(z)? Well, we can work with the cumulative
density functions to relate these to probabilities we can rewrite as follows:

FZ(z) = P (Z ≤ z)
= P (X + Y ≤ z)

=

∫ ∞
−∞

P (X + Y ≤ z | X = x) fX(x)dx

=

∫ ∞
−∞

P (x+ Y ≤ z | X = x) fX(x)dx

=

∫ ∞
−∞

P (Y ≤ z − x) fX(x)dx

=

∫ ∞
−∞

FY (z − x)fX(x)dx

Then, we can solve for the probability density function by differentiating:

fZ(z) =
d

dz
FZ(z)

=

∫ ∞
−∞

fY (z − x)fX(x)dx

5.5.2 Convolution

Convolution is a mathematical operation that allows to derive the distribution of a sum of two independent
random variables.

For example, suppose the amount of gold a company can mine is X tons per year in country A, and the
amount of gold the company can mine is Y tons per year in country B, independently. You have some
distribution to model each. What is the distribution of the total amount of gold you mine, Z = X + Y ?

Definition 5.5.2.1: Convolution

Let X, Y be independent random variables, and Z = X + Y .
Discrete version: If X, Y are discrete:

pZ(z) =
∑
x∈ΩX

pX(x)pY (z − x)

Continuous version: If X, Y are continuous:

FZ(z) =

∫ ∞
−∞

fX(x)FY (z − x)dx
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fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx

Note: You can swap the roles of X and Y . Note the similarity between the cases!

Proof of Convolution.:

• Discrete case:

pZ(z) = P (Z = z)

=
∑
x∈ΩX

P (X = x, Z = z) [LTP/marginal]

=
∑
x∈ΩX

P (X = x, Y = z − x) [(X = x, Z = z) equivalent to (X = x, Y = z − x)]

=
∑
x∈ΩX

P (X = x)P (Y = z − x) [X and Y are independent]

=
∑
x∈ΩX

pX(x)pY (z − x)

• Continuous case:

FZ(z) = P (Z ≤ z)
= P (X + Y ≤ z) [def of Z]

=

∫ ∞
−∞

P (X + Y ≤ z|X = x)fX(x)dx) [LTP]

=

∫ ∞
−∞

P (x+ Y ≤ z|X = x)fX(x)dx) [Given X = x]

=

∫ ∞
−∞

P (Y ≤ z − x|X = x)fX(x)dx) [algebra]

=

∫ ∞
−∞

P (Y ≤ z − x)fX(x)dx) [X and Y are independent]

=

∫ ∞
−∞

FY (z − x)fX(x)dx [def of CDF]

Now we can take the derivative to get the density with respect to z to get the pdf:

fZ(z) =
d

dz
FZ(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx

Examples

Suppose X and Y are two independent random variables such that X ∼ Poi(λ1) and Y ∼ Poi(λ2),
and let Z = X + Y . Prove that Z ∼ Poi(λ1 + λ2).
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The range of X,Y are ΩX = ΩY = {0, 1, 2, . . . }, and so ΩZ = {0, 1, 2, . . . } as well. For n ∈ ΩZ :

pZ(n) =

n∑
k=0

pX(k)pY (n− k) [convolution formula]

=

n∑
k=0

e−λ1
λk1
k!
· e−λ2

λn−k2

(n− k)!
[plug in Poisson PMFs]

= e−(λ1+λ2)
n∑
k=0

1

k!(n− k)!
λk1(1− λ2)n−k

= e−(λ1+λ2) 1

n!

n∑
k=0

n!

k!(n− k)!
λk1(1− λ2)n−k [multiply and divide by n!]

= e−(λ1+λ2) 1

n!

n∑
k=0

(
n

k

)
λk1(1− λ2)n−k

[(
n

k

)
=

n!

k!(n− k)!

]
= e−(λ1+λ2) (λ1 + λ2)n

n!
[binomial theorem]

Thus, Z ∼ Poi(λ1 + λ2), as its PMF matches that of a Poisson distribution.

Examples

Suppose X, Y are independent and identically distributed (iid) continuous Unif(0, 1) random vari-
ables. Let Z = X + Y . What is fZ(z)?

We always begin by calculating the range: we have ΩZ = [0, 2].

For a U ∼ Unif(0, 1) random variable, we know ΩU = [0, 1], and that

fU (u) =

{
1 0 ≤ u ≤ 1
0 otherwise

The convolution formula tells us that

fZ(z) =

∫ 1

0

fX(x)fY (z − x)dx =

∫ 1

0

fY (z − x)dx

where the second formula holds since fX(x) = 1 for all 0 ≤ x ≤ 1 as we saw above.

For fY (z− x) > 0, we need 0 ≤ z− x ≤ 1 (otherwise it will be = 0). We’ll split into two cases depending on
whether z ∈ [0, 1] or z ∈ [0, 2], which compose its range ΩZ = [0, 2].

• If z ∈ [0, 1], we already have z − x ≤ 1 since z ≤ 1. We also need z − x ≥ 0 for the density to be
nonzero: x ≤ z. Hence, our integral becomes:

fZ(z) =

∫ z

0

fY (z − x)dx+

∫ 1

z

fY (z − x)dx

=

∫ z

0

1dx+ 0 = [x]z0 = z
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• If z ∈ [1, 2], we already have z− x ≥ 0 since z ≥ 1. We now need the other condition z− x ≤ 1 for the
density to be nonzero: x ≥ z − 1. Hence, our integral becomes:

fZ(z) =

∫ z−1

0

fY (z − x)dx+

∫ 1

z−1

fY (z − x)dx

= 0 +

∫ 1

z−1

1dx = [x]1z−1 = 2− z

Thus, putting these two cases together gives:

fZ(z) =

 z 0 ≤ z ≤ 1
2− z 1 ≤ z ≤ 2

0 otherwise

Figure 5.5.1: Triangular distribution for Z

This makes sense because there are “more ways” to get a value of 1 for example than any other point.
Whereas to get a value of 2, there’s only one way - we need both X,Y to be equal to 1.
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