CSE 312 Foundations of Computing II

Lecture 1: Counting

Rachel Lin, Hunter Schafer

1

Slide Credit: Based on Stefano Tessaro's slides for 312 19au

incorporating ideas from Alex Tsun's and Anna Karlin's slides for 312 20su and 20au

Instructors

Hunter Schafer

hschafer@cs Assistant Teaching Professor https://homes.cs.washington.edu/~hschafer/

Huijia (Rachel) Lin

rachel@cs Associate Professor Specialty: **Cryptography** https://homes.cs.washington.edu/~rachel/

A Team of fantastic TAs

JOSEPH AZIZEH ASHWIN KISHIN BANWARI Harrison Bay EGE CAGLAR RAHUL CHANDRA **XINYUE CHEN** Anna Dmitrievna Goncharenko William Howard-Snyder SHREYA JAYARAMAN

ALEKS JOVCIC Logan Milandin **TYLER PHUC BAO NGUYEN** Jerome Paliakkara **RISHABH SURESH PATTED** PHAWIN PRONGPAOPHAN Zoey Shi LUXI WANG YUKAI YAN

Lectures and Sections (ZOOM – ZOOM - ZOOM)

Lectures MWF

- 9:30-10:20am or 1:30-2:20pm
- Recorded and video released after class
- Monday lectures are covered by Rachel, Friday lectures by Hunter
- Wednesday lectures are covered alternatively by Rachel and Hunter

• Ask questions by writing in the chat

- Questions will be answered periodically
- Some questions may be deferred to the end of the lecture
- Feel free to answer your fellow classmate's questions on chat

• Sections Thu (starts this week)

Not recorded, for privacy of student discussion

Questions and Discussions

Office hour throughout the week (starting Tuesday)

Ed Discussion

You should have received an invitation (synchronized with the class roaster)

- Material (resources tab)
- Announcement (discussion tab)
- Discussion (discussion tab)

Use Ed discussion forum as much as possible. You can make private posts that only the staff can view! Email instructors for personal issues.

Engagement

• Checkpoints after each lecture 10%

- Must be done before the next lecture.
- Simple questions to reinforce concepts taught in each class
- Keep you engaged throughout the week, so that homework becomes less of a hurdle

• 8 Homework (Gradescope) 60%

- Teams of 1 or 2. Submit a single solution only.
- Discussion outside the group must remain high-level. See examples on course webpage

• 1 Midterm and 1 Final 15%+15%

- Teams of 1 or 2. Submit individual solutions.
- No Discussion outside the group

Check out the syllabus for policies on late submission for check points and HW

More details see

Course Webpage https://courses.cs.washington.edu/courses/cse312/21wi/

Foundations of Computing II

Introduction to Probability & Statistics for <u>computer scientists</u>

> <u>What</u> is probability?? <u>Why</u> probability?!

Content

- Counting (basis of discrete probability)
 - Counting, Permutation, Combination, inclusion-exclusion, Pigeonhole Principle
- What is probability
 - Probability space, events, basic properties of probabilities, conditional probability, independence, expectation, variance
- Properties of probability
 - Various inequalities, Zoom of discrete random variables, Concentration, Tail bounds
- Continuous Probability
 - Probability Density Functions, Cumulative Density Functions, Uniform, Exponential, Normal distributions, Central Limit Theorem, Estimation
- Applications
 - A sample of randomized algorithms, differential privacy, learning ...

Today: Counting

We are interested in counting the number of objects with a certain given property.

"How many ways are there to assign 7 TAs to 5 sections, such that each section is assigned to two TAs, and no TA is assigned to more than two sections?"

> "How many integer solutions $(x, y, z) \in \mathbb{Z}^3$ does the equation $x^3 + y^3 = z^3$ have?"

Generally: Question boils down to computing cardinality |S| of some given set S.

(Discrete) Probability and Counting are Twin Brothers

"What is the probability that a random student from CSE312 has black hair?"

students with black hair

#students

shutterstock.com • 579768892

Sum Rule

If you can choose from

- Either one of *n* options,
- OR one of *m* options with NO overlap with the previous *n*, then the number of possible outcomes of the experiment is

n + m

Counting "outfits"

If an outfit consists of **either** a top **or** a bottom, how many outfits are possible?

Product Rule: In a sequential process, there are

- n_1 choices for the first step,
- n_2 choices for the second step (given the first choice), ..., and
- n_m choices for the m^{th} step (given the previous choices),

then the total number of outcomes is $n_1 \times n_2 \times \cdots \times n_m$

Example – Strings

How many string of length 5 over the alphabet $\{A, B, C, ..., Z\}$ are there? • E.g., ALURE, BINGO, TANGO, STEVE, SARAH, ... 26 x 26 x 26 x 26 x 26 = 26⁵

How many binary string of length n over the alphabet {0,1}?

17

• E.g.,
$$0 \cdots 0, 1 \cdots 1, 0 \cdots 01, \dots$$

2 x 2 x 2 x ... x 2 = 2ⁿ

Example – Laptop customization

Alice wants to buy a new laptop.

- The laptop can be **blue**, **orange**, **purple**, or **silver**.
- The SSD storage can be 128GB, 256GB, and 512GB
- The available RAM can be **8GB** or **16GB**.
- The laptop comes with a <u>13</u>" or with a <u>15</u>" screen.

How many different laptop configurations are there?

$$4 \times 3 \times 2 \times 2 = 48$$

Example -- Cartesian Product

Example – Power set

=

0

Definition. The power set of *S* is $2^{S} \stackrel{\text{def}}{=} \{X : X \subseteq S\}$

Example. $2^{\{\bigstar, \bigstar\}} = \{\emptyset, \{\bigstar\}, \{\bigstar\}, \{\bigstar\}\} \longrightarrow 2^2 = 4$ $2^0 = \{\emptyset\} \longrightarrow 2^0 = 1$

How many different subsets of *S* are there? That is $|2^{S}|$?

Proposition. $|2^{S}| = 2^{|S|} |2^{0}| = 2^{|0|} = 2^{0} = 2^{0} = 1$

How to design a sequential process that produces a subset?

Example – Power set

$$S = \{e_1, e_2, e_3, \cdots, e_n\} \quad n = |s|$$

$$X = \{e_1, \dots, e_3, \dots, e_n\}$$

$$Z \times Z \times Z \times \dots \times Z = (2^n = 2^{|s|})$$

Product rule – One more example

5 books

"How many ways are there to distribute 5 books among Alice, Bob, and Charlie?"

Every book to one person, everyone gets ≥ 0 books.

Problem – Overcounting

Problem: We are counting some invalid assignments!!!
→ overcounting!

What went wrong in the sequential process?After assigning *A* to Alice,*B* is no longer a valid option for Bob

Book assignments – A Clever Approach

Lesson: Representation of what we are counting is very important!

Tip: Use different methods to double check yourself Think about counter examples to your own solution.

Food for thought: How many book assignment are there if no person can get more than 2 books?

This Photo by Unknown Author is licensed under CC BY-NC

The first concept check is out and due 9:00am before the next lecture

The concept checks are meant to help you immediately reinforce what is learned.

Students from the last quarter found them really useful!