Lecture 28: Differential Privacy

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Alex Tsun’s and Anna Karlin’s slides for 312 20su and 20au
Setting

Medical data
Query logs
Social network data
...

Data mining
Statistical queries
Main concern: Do not violate user privacy!

Publish:
Aggregated data, e.g., outcome of medical study, research paper, ...
Example – Linkage Attack

- The Commonwealth of Massachusetts Group Insurance Commission (GIC) releases 135,000 records of patient encounters, each with 100 attributes
 - Relevant attributes removed, but ZIP, birth date, gender available
 - Considered “safe” practice
- Public voter registration record
 - Contain, among others, name, address, ZIP, birth date, gender
- Allowed identification of medical records of William Weld, governor of MA at that time
 - He was the only man in his zip code with his birth date ...

+More attacks! (cf. Netflix grand prize challenge!)
One way out? Differential Privacy

• A **formal definition** of privacy
 – Satisfied in systems deployed by Google, Uber, Apple, ...
• Used by 2020 census
• Idea: *Any information-related risk to a person should not change significantly as a result of that person’s information being included, or not, in the analysis.*
 – Even with side information!
Ideal Individual’s Privacy

For every individual A whose record in DB

DB w/ A’s data → Analysis → Output
DB w/o A’s data → Analysis → Output’

Very good for privacy. But the output would be useless as it does not depend on any individual’s record!

Ideally: Should be identical!

Common Theme:
• Tension / Balance between privacy & utility
• Privacy is not a 0 / 1 property.
More Realistic Privacy Goal

DB w/ A’s data → Analysis → Output

DB w/o A’s data → Analysis → Output’

Should be “similar”
Setting – Formal

We say that \(\vec{x}, \vec{x}' \) differ at exactly one entry.

\[\vec{x}, \vec{x}' \in \mathbb{R} \]

\[\vec{x}', \vec{x} \in \mathbb{R} \]

Here, \(M \) is randomized, i.e., it makes random choices.

\[M = \text{mechanism} \]

\[M(\vec{x}) \in \mathbb{R} \]

\[M(\vec{x}') \in \mathbb{R} \]
Setting – Mechanism

Definition. A mechanism M is ϵ-differentially private if for all subsets* $T \subseteq \mathbb{R}$, and for all databases \bar{x}, \bar{x}' which differ at exactly one entry,

$$\mathbb{P}(M(\bar{x}) \in T) \leq e^\epsilon \mathbb{P}(M(\bar{x}') \in T)$$

Think: $\epsilon = \frac{1}{100}$ or $\epsilon = \frac{1}{10}$

* Can be generalized beyond output in \mathbb{R}

Dwork, McSherry, Nissim, Smith, ‘06
Example – Counting Queries

• DB is a vector $\mathbf{x} = (x_1, ..., x_n)$ where $x_1, ..., x_n \in \{0,1\}$
 - $x_i = 1$ if individual i has diseases
 - $x_i = 0$ means patient does not have disease or patient data wasn’t recorded.

• Query: $q(\mathbf{x}) = \sum_{i=1}^{n} x_i$

Here: \mathbf{x} and \mathbf{x}' differ at one entry means they differ at one single coordinate, e.g., $x_i = 1$ and $x'_i = 0$
A solution – Laplacian Noise

Mechanism M taking input $\vec{x} = (x_1, \ldots, x_n)$:
- Return $M(\vec{x}) = \sum_{i=1}^{n} x_i + Y$

Here, Y follows a Laplace distribution with parameter ϵ

\[
f_Y(y) = \frac{\epsilon}{2} e^{-\epsilon |y|}
\]
\[
\mathbb{E}(Y) = 0
\]
\[
\text{Var}(Y) = \frac{2}{\epsilon^2}
\]
Better Solution – Laplacian Noise

Mechanism M taking input $\vec{x} = (x_1, \ldots, x_n)$:
• Return $M(\vec{x}) = \sum_{i=1}^{n} x_i + Y$

“Laplacian mechanism with parameter ϵ“

Here, Y follows a **Laplace distribution** with parameter ϵ

$$f_Y(y) = \frac{\epsilon}{2} e^{-\epsilon |y|}$$

Key property: For all y, Δ

$$\frac{f_Y(y)}{f_Y(y + \Delta)} \leq e^{\epsilon \Delta}$$
Laplacian Mechanism – Privacy

Theorem. The Laplacian Mechanism with parameter ε satisfies ε-differential privacy

Show: $\forall \vec{x}, \vec{x}'$ differ at one entry, $[a, b]$

\[
\Pr(M(\vec{x}) \in [a, b]) \leq e^{\varepsilon} \Pr(M(\vec{x}') \in [a, b])
\]

\[
\Delta = \sum_{i=1}^{n} x'_i - \sum_{i=1}^{n} x_i \quad |\Delta| \leq 1
\]

\[
\Pr(M(\vec{x}) \in [a, b]) = \Pr(s + Y \in [a, b]) = \int_{a-s}^{b-s} f_Y(y)dy = \int_{a}^{b} f_Y(y' - s)dy'
\]

\[
= \int_{a}^{b} f_Y(y - s' + \Delta)dy \leq e^{\varepsilon\Delta} \int_{a}^{b} f_Y(y - s')dy \leq e^{\varepsilon} \int_{a}^{b} f_Y(y - s')dy
\]

\[
\leq e^{\varepsilon} \Pr(M(\vec{x}') \in [a, b])
\]
How Accurate is Laplacian Mechanism?

Let’s look at $\sum_{i=1}^{n} x_i + Y$

- $\mathbb{E}(\sum_{i=1}^{n} x_i + Y) = \sum_{i=1}^{n} x_i + \mathbb{E}(Y) = \sum_{i=1}^{n} x_i$
- $\text{Var}(\sum_{i=1}^{n} x_i + Y) = \text{Var}(Y) = \frac{2}{\epsilon^2}$

This is accurate enough for large enough n!
Differential Privacy – What else can we compute?

- **Statistics:** counts, mean, median, histograms, boxplots, etc.
- **Machine learning:** classification, regression, clustering, distribution learning, etc.
- ...
Differential Privacy – Nice Properties

- **Group privacy:** If M is ϵ-differentially private, then for all $T \subseteq \mathbb{R}$, and for all databases \vec{x}, \vec{x}' which differ at (at most) k entries,

 $$\mathbb{P}(M(\vec{x}) \in T) \leq e^{k\epsilon} \mathbb{P}(M(\vec{x}') \in T)$$

- **Composition:** If we apply two ϵ-DP mechanisms to data, combined output is 2ϵ-DP.
 - How much can we allow ϵ to grow? (So-called “privacy budget.”)

- **Post-processing:** Postprocessing does not decrease privacy.
Local Differential Privacy

Laplacian Mechanism

What if we don’t trust aggregator?

\[\sum \]

Solution: Add noise locally!
Example – Randomize Response

Mechanism M taking input $\mathbf{x} = (x_1, \ldots, x_n)$:

- For all $i = 1, \ldots, n$:

 $- y_i = x_i \text{ w/ probability } \frac{1}{2} + \alpha$, and $y_i = 1 - x_i \text{ w/ probability } \frac{1}{2} - \alpha$.

 $- \hat{x}_i = \frac{y_i - \frac{1}{2} + \alpha}{2\alpha}$

- Return $M(\mathbf{x}) = \sum_{i=1}^{n} \hat{x}_i$

For a given parameter α

Example – Randomize Response

Mechanism M taking input $\vec{x} = (x_1, \ldots, x_n)$:

- For all $i = 1, \ldots, n$:
 - $y_i = x_i$ w/ probability $\frac{1}{2} + \alpha$, and $y_i = 1 - x_i$ w/ probability $\frac{1}{2} - \alpha$.
 - $\hat{x}_i = \frac{y_i - \frac{1}{2} + \alpha}{2\alpha}$

- Return $M(\vec{x}) = \sum_{i=1}^{n} \hat{x}_i$

Theorem. Randomized Response with parameter α satisfies ϵ-differential privacy, if $\alpha = \frac{e^\epsilon - 1}{e^\epsilon + 1}$.

Fact 1. $\mathbb{E}(M(\vec{x})) = \sum_{i=1}^{n} x_i$

Fact 2. $\text{Var}(M(\vec{x})) \approx \frac{n}{\epsilon^2}$
Differential Privacy – Challenges

- **Accuracy vs. privacy:** How do we choose ϵ?
 - Practical applications tend to err in favor of accuracy.
 - See e.g. https://arxiv.org/abs/1709.02753

- **Fairness:** Differential privacy hides contribution of small groups, by design
 - How do we avoid excluding minorities?
 - Very hard problem!
Literature

• Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of Differential Privacy”.
 – https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf

• https://privacytools.seas.harvard.edu/
Epilogue

- Thank you for working hard with me and the TAs throughout this difficult time. You have shown your resilience!
- I feel fortunate to have the experience to teach you in this class.
- Enjoy a great summer and come back stronger.