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Review Tail Bounds

Putting a limit on the probability that a random variable is in the 
“tails” of the distribution (e.g., not near the middle).

Usually statements in the form of

Pr 𝑋 ≥ 𝑎 ≤ 𝑏

or

Pr |𝑋 − 𝐸 𝑋 | ≥ 𝑎 ≤ 𝑏
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Review Markov’s and Chebyshev’s Inequalities
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Theorem (Markov’s Inequality). Let 𝑋 be a random variable taking 
only non-negative values. Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤
𝔼 𝑋

𝑡
. 

Theorem (Chebyshev’s Inequality). Let 𝑋 be a random variable. Then, 
for any 𝑡 > 0,

ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var 𝑋

𝑡2
. 



Agenda

• Union Bound

• Chernoff Bound

• Application: Polling (again)

• Extra Example: Server Load
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Union Bound

Not a tail bound, but a useful formula

Intuition (2 evts.): ℙ 𝐴1 ∪ 𝐴2 = ℙ 𝐴1 + ℙ 𝐴2 − ℙ 𝐴1 ∩ 𝐴2
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Theorem (Union Bound). Let 𝐴1, … , 𝐴𝑛 be arbitrary events. Then,

ℙ ራ

𝑖=1

𝑛

𝐴𝑖 ≤෍

𝑖=1

𝑛

ℙ(𝐴𝑖)



Union Bound - Example

Suppose we have 𝑁 = 200 computers, where each one fails 
with probability 0.001. What is the probability that at least one 
server fails? 

Let 𝐴𝑖 be the event that server 𝑖 fails. Then at least one server 

fails in the event ∪𝑖=1
𝑁 𝐴𝑖

Pr ራ

𝑖=1

𝑁

𝐴𝑖 ≤ ෍

𝑖=1

𝑁

Pr 𝐴𝑖 = 0.001𝑁 = 0.2
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Agenda

• Union Bound

• Chernoff Bound

• Application: Polling (again)

• Extra Example: Server Load
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Chebyshev: ℙ 𝑋 − 100 ≥ 10 ≤
1
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Real: ℙ 𝑋 − 100 ≥ 10 = 0.179…

Binomial with parameter 𝑛 = 200, 𝑝 = 0.5
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361 439

Chebyshev: ℙ 𝑋 − 400 ≥ 40 ≤ 0.125

Real: ℙ 𝑋 − 400 ≥ 40 = 0.005…

Binomial with parameter 𝑛 = 800, 𝑝 = 0.5



Chernoff-Hoeffding Bound – Binomial Distribution
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Theorem. (CH bound, binomial case) Let 𝑋 be a binomial RV with 
parameters 𝑝 and 𝑛. Let 𝜇 = 𝑛𝑝 = 𝔼 𝑋 . Then, for any 𝜖 > 0,

ℙ 𝑋 − 𝜇 ≥ 𝜖 ⋅ 𝜇 ≤ 2𝑒−
𝜖2𝜇

2+𝜖 = 2𝑒−
𝜖2𝑛𝑝

2+𝜖 . 

Binomial: 𝑛 = 800, 𝑝 = 0.5 → 𝜇 = 𝑛𝑝 = 400

Chebyshev: ℙ 𝑋 − 𝜇 ≥ 0.1𝜇 ≤ 0.125

CH: ℙ 𝑋 − 𝜇 ≥ 0.1𝜇 ≤ 2𝑒−
4

2.1 = 0.296…



Chernoff-Hoeffding Bound – Binomial Distribution
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Theorem. (CH bound, binomial case) Let 𝑋 be a binomial RV with 
parameters 𝑝 and 𝑛. Let 𝜇 = 𝑛𝑝 = 𝔼 𝑋 . Then, for any 𝜖 > 0,

ℙ 𝑋 − 𝜇 ≥ 𝜖 ⋅ 𝜇 ≤ 2𝑒−
𝜖2𝜇

2+𝜖 = 2𝑒−
𝜖2𝑛𝑝

2+𝜖 . 

Binomial: 𝑛 = 8000, 𝑝 = 0.5 → 𝜇 = 𝑛𝑝 = 4000

Chebyshev: ℙ 𝑋 − 𝜇 ≥ 0.1𝜇 ≤ 0.0125

CH: ℙ 𝑋 − 𝜇 ≥ 0.1𝜇 ≤ 2𝑒−
40

2.1 ≈ 1.7 × 10−8



Chernoff-Hoeffding Bound, beyond Binomial RV
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Theorem. Let 𝑋 = 𝑋1 +⋯+ 𝑋𝑛 be a sum of independent RVs, each 
taking values in [0,1], such that 𝔼 𝑋 = 𝜇. Then, for every 𝜖 > 0,

ℙ 𝑋 ≥ (1 + 𝜖) ⋅ 𝜇 ≤ 𝑒−
𝜖2𝜇
2+𝜖 , ℙ 𝑋 ≤ (1 − 𝜖) ⋅ 𝜇 ≤ 𝑒−

𝜖2𝜇
2

In particular,

ℙ 𝑋 − 𝜇 ≥ 𝜖 ⋅ 𝜇 ≤ 2𝑒−
𝜖2𝜇
2+𝜖

Herman Chernoff, Herman Rubin, Wassily Hoeffding

Example: If 𝑋 binomial w/ parameters 𝑛, 𝑝, then 𝑋 = 𝑋1 +⋯+ 𝑋𝑛 is a sum of 
independent {0,1}-Bernoulli variables, and 𝜇 = 𝑛𝑝



Agenda

• Union Bound

• Chernoff Bound

• Application: Polling (again)

• Extra Example: Server Load
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Application – Polling 

We have a (large) population of 𝑀 CS students. 

• A fraction 𝑝 ∈ [0,1] supports the introduction of CSE 313

– a harder, follow-up class to CSE 312, with even more math

– CSE 313 would be a hard requirement for all NLP/ML classes

• We want to estimate 𝑝 without asking all 𝑀 students! 
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How can we do this with enough accuracy?
[Say, estimate within absolute error 𝜖]



Polling (cont’d)

Solution: For 𝑖 = 1,… , 𝑛 do: 

• Pick a random student 𝑃𝑖 (out of the 𝑀 students) and ask 
them whether they want CSE 313

• Let 𝑋𝑖 = 1 if student 𝑃𝑖 wants CSE 313, and 𝑋𝑖 = 0 else.

Output estimate ෠𝑃 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖

ℙ 𝑋𝑖 = 1 =𝑝 Want: ℙ ෠𝑃 − 𝑝 ≥ 𝜖 ≤ 𝛿

For which 𝑛 is this true?! What’s the chance ෠𝑃 − 𝑝 ≥ 𝜖

𝔼 ෠𝑃 = 𝑝



Polling (cont’d)
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ℙ 𝑋𝑖 = 1 =𝑝

ℙ ෠𝑃 − 𝑝 ≥ 𝜖 = ℙ 𝑛 ෠𝑃 − 𝑛𝑝 ≥ 𝑛𝜖

= ℙ σ𝑖
𝑛𝑋𝑖 − 𝑛𝑝 ≥ 𝑛𝜖

≤ 2 exp −
𝜖2/𝑝2

2 + 𝜖/𝑝
𝑝𝑛

= ℙ σ𝑖
𝑛𝑋𝑖 − 𝑛𝑝 ≥ 𝑛𝑝

𝜖

𝑝

= 2exp −
𝜖2

2𝑝 + 𝜖
𝑛 ≤ 2 exp −

𝜖2

2 + 𝜖
𝑛

Theorem. Let 𝑋 be a binomial RV with parameters 𝑝
and 𝑛. Let 𝜇 = 𝑛𝑝 = 𝔼 𝑋 . Then, for any  𝜖 > 0,

ℙ 𝑋 − 𝜇 ≥ 𝜖 ⋅ 𝜇 ≤ 2𝑒−
𝜖2𝜇

2+𝜖. 

Reminder: exp 𝑥 = 𝑒𝑥



Polling (cont’d)
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ℙ 𝑋𝑖 = 1 =𝑝

ℙ ෠𝑃 − 𝑝 ≥ 𝜖 ≤ 2 exp −
𝜖2

2 + 𝜖
𝑛

We have proved:

We have 2 exp −
𝜖2

2+𝜖
𝑛 ≤ 𝛿 if (and only if)  

𝑛 ≥ ln 2/𝛿
2 + 𝜖

𝜖2



Polling – Summary
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Theorem. (Sampling Theorem) Assume we use independent uniformly 
random samples to produce an estimate ෠𝑃 of 𝑝 ∈ [0,1]. If 

𝑛 ≥ ln 2/𝛿
2+𝜖

𝜖2
, 

then 

ℙ ෠𝑃 − 𝑝 ≤ 𝜖 ≥ 1 − 𝛿.

Important: “Sample size” 𝑛 is independent of the population size, 𝑀. 
Only depends on desired accuracy.

e.g. 𝜖 = 0.02, 𝛿 = 0.05, 𝑛 ≥ 15,128

Central question in CS and statistics – can we do better?!
Central question in polling – how can we sample n iid samples?



Agenda

• Union Bound

• Chernoff Bound

• Application: Polling (again)

• Extra Example: Server Load
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Why is the Chernoff Bound True?

Proof strategy: For any 𝑡 > 0:

• ℙ 𝑋 ≥ (1 + 𝜖) ⋅ 𝜇 = ℙ 𝑒𝑡𝑋 ≥ 𝑒𝑡(1+𝜖)⋅𝜇

• Then, apply Markov + independence:

ℙ 𝑋 ≥ (1 + 𝜖) ⋅ 𝜇 ≤
𝔼 𝑒𝑡𝑋

𝑒𝑡 1+𝜖 𝜇
=
𝔼 𝑒𝑡𝑋1 ⋯𝔼 𝑒𝑡𝑋𝑛

𝑒𝑡 1+𝜖 𝜇

• Find 𝑡 minimizing the right-hand-side.  
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Theorem. Let 𝑋 = 𝑋1 +⋯+ 𝑋𝑛 be a sum of independent RVs taking values in [0,1] such that 𝔼 𝑋 =
𝜇. Then, for every 𝜖 > 0,

ℙ 𝑋 ≥ (1 + 𝜖) ⋅ 𝜇 ≤ 𝑒−
𝜖2𝜇
2+𝜖 , ℙ 𝑋 ≤ (1 − 𝜖) ⋅ 𝜇 ≤ 𝑒−

𝜖2𝜇
2



Application – Distributed Load Balancing
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We have 𝑘 processors, and 𝑛 ≫ 𝑘 jobs. We want to distribute jobs 
evenly across processors.  

Strategy: Each job assigned to a randomly chosen processor!

𝑋𝑖 = load of processor 𝑖 𝔼(𝑋𝑖) = 𝑛/𝑘

Question: How close is 𝑋 to 𝑛/𝑘? 

𝑋𝑖~Binomial 𝑛, 1/𝑘

𝑋 = max{𝑋1, … , 𝑋𝑘} = max load of a processor



Distributed Load Balancing
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Claim. (Load of single server) If 𝑛 > 9𝑘 ln 𝑘, then 

ℙ 𝑋𝑖 >
𝑛

𝑘
+ 3

𝑛 ln 𝑘

𝑘
= ℙ 𝑋𝑖 >

𝑛

𝑘
1 + 3

𝑘 ln 𝑘

𝑛
≤ 1/𝑘3. 

Example:
• 𝑛 = 106 ≫ 𝑘 = 1000

•
𝑛

𝑘
+ 3 𝑛 ln 𝑘 /𝑘 ≈ 1249

• “The probability that server 𝑖 processes more than 1249 jobs is at most 
1-over-one-billion!”



Distributed Load Balancing
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ℙ 𝑋𝑖 > 𝜇 1 + 3
k ln 𝑘

𝑛

Proof. Set 𝜇 = 𝔼 𝑋𝑖 =
𝑛

𝑘
and 𝜖 = 3

𝑘

𝑛
ln 𝑘 < 3

𝑘

9𝑘 ln 𝑘
ln 𝑘 = 1

= ℙ 𝑋𝑖 > 𝜇 1 + 𝜖

≤ 𝑒−
𝜖2𝜇
2+𝜖 < 𝑒−

𝜖2𝜇
3 = 𝑒−3 ln 𝑘 =

1

𝑘3

Claim. (Load of single server) If 𝑛 > 9𝑘 ln 𝑘, then 

ℙ 𝑋𝑖 >
𝑛

𝑘
+ 3

𝑛 ln 𝑘

𝑘
= ℙ 𝑋𝑖 >

𝑛

𝑘
1 + 3

𝑘 ln 𝑘

𝑛
≤ 1/𝑘3. 

𝑛 > 9𝑘 ln 𝑘



What about the maximum load?
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Claim. (Load of single server) If 𝑛 > 9𝑘 ln 𝑘, then 

ℙ 𝑋𝑖 >
𝑛

𝑘
+ 3

𝑛 ln 𝑘

𝑘
≤ 1/𝑘3. 

What about 𝑋 = max{𝑋1, … , 𝑋𝑘}?

Note: 𝑋1, … , 𝑋𝑘 are not (mutually) independent! 

In particular: 𝑋1 +⋯+ 𝑋𝑘 = 𝑛 When non-trivial outcome of one RV 
can be derived from other RVs, they 
are non-independent.



Distributed Load Balancing
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Claim. (Load of single server) If 𝑛 > 9𝑘 ln 𝑘, then 

ℙ 𝑋𝑖 >
𝑛

𝑘
+ 3 𝑛 ln 𝑘 /𝑘 ≤ 1/𝑘3. 

Claim. (Max load) Let 𝑋 = max{𝑋1, … , 𝑋𝑘}. If 𝑛 > 9𝑘 ln 𝑘, then 

ℙ 𝑋 >
𝑛

𝑘
+ 3 𝑛 ln 𝑘 /𝑘 ≤ 1/𝑘2. 

Union Bound: ℙ 𝐀𝟏 ∪ 𝑨𝟐⋯∪ 𝑨𝒏 ≤ Σ𝑖 ℙ(𝑨𝒊)

Always holds. No assumption on 𝐴𝑖’s



Distributed Load Balancing
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Claim. (Load of single server) If 𝑛 > 9𝑘 ln 𝑘, then 

ℙ 𝑋𝑖 >
𝑛

𝑘
+ 3 𝑛 ln 𝑘 /𝑘 ≤ 1/𝑘3. 

Claim. (Max load) Let 𝑋 = max{𝑋1, … , 𝑋𝑘}. If 𝑛 > 9𝑘 ln 𝑘, then 

ℙ 𝑋 >
𝑛

𝑘
+ 3 𝑛 ln 𝑘 /𝑘 ≤ 1/𝑘2. 

Proof. 

ℙ 𝑋 >
𝑛

𝑘
+ 3 𝑛 ln 𝑘 /𝑘 = ℙ 𝑋1 >

𝑛

𝑘
+ 3 𝑛 ln 𝑘 /𝑘 ∪ ⋯∪ 𝑋𝑘 >

𝑛

𝑘
+ 3 𝑛 ln 𝑘 /𝑘

≤ ℙ 𝑋1 >
𝑛

𝑘
+ 3

𝑛 ln 𝑘

𝑘
+⋯+ ℙ 𝑋𝑘 >

𝑛

𝑘
+ 3 𝑛 ln 𝑘 /𝑘 ≤ 𝑘 ⋅

1

𝑘3
= 1/𝑘2

Union Bound: ℙ 𝐀𝟏 ∪ 𝑨𝟐⋯∪ 𝑨𝒏 ≤ Σ𝑖 ℙ(𝑨𝒊)


