CSE 312

Foundations of Computing II

Lecture 23: Chernoff Bound & Union Bound

Rachel Lin, Hunter Schafer

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun's and Anna Karlin's slides for 312 20su and 20au

Review Tail Bounds

Putting a limit on the probability that a random variable is in the "tails" of the distribution (e.g., not near the middle).

Usually statements in the form of

$$\Pr(X \ge a) \le b$$

or

$$\Pr(|X - E[X]| \ge a) \le b$$

Review Markov's and Chebyshev's Inequalities

Theorem (Markov's Inequality). Let X be a random variable taking only non-negative values. Then, for any t > 0,

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}.$$

Theorem (Chebyshev's Inequality). Let X be a random variable. Then, for any t > 0,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}.$$

Agenda

- Union Bound
- Chernoff Bound
- Application: Polling (again)
- Extra Example: Server Load

Union Bound

Not a tail bound, but a useful formula

Theorem (Union Bound). Let A_1, \dots, A_n be arbitrary events. Then,

$$\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) \leq \sum_{i=1}^n \mathbb{P}(A_i)$$

Intuition (2 evts.): $\mathbb{P}(A_1 \cup A_2) = \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2)$

Union Bound - Example

Suppose we have N = 200 computers, where each one fails with probability 0.001. What is the probability that at least one server fails?

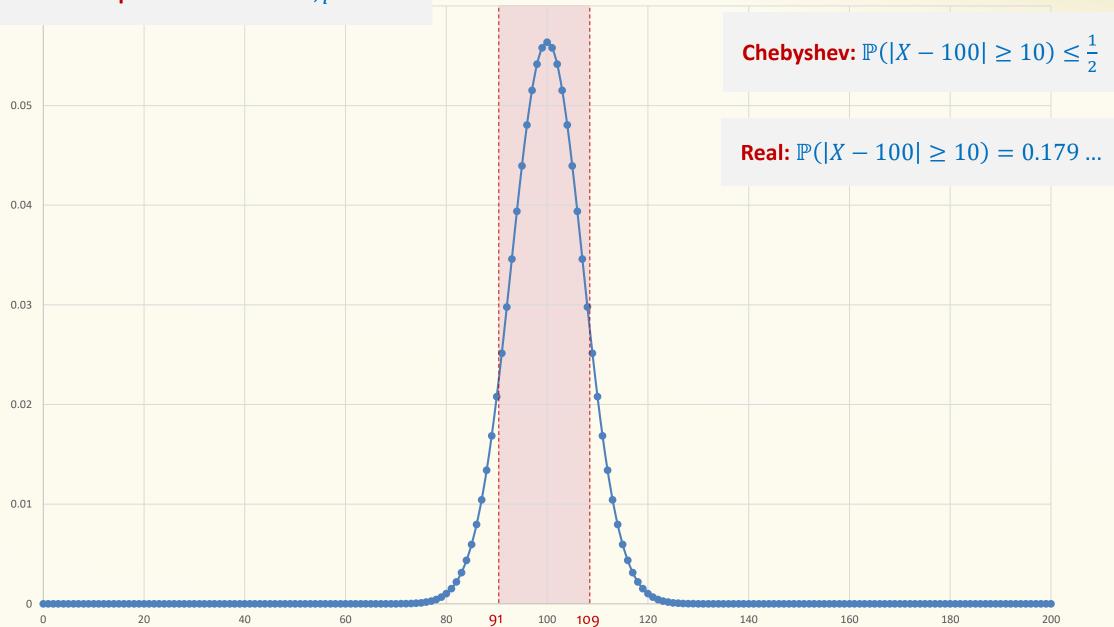
Let A_i be the event that server i fails. Then at least one server fails in the event $\bigcup_{i=1}^{N} A_i$

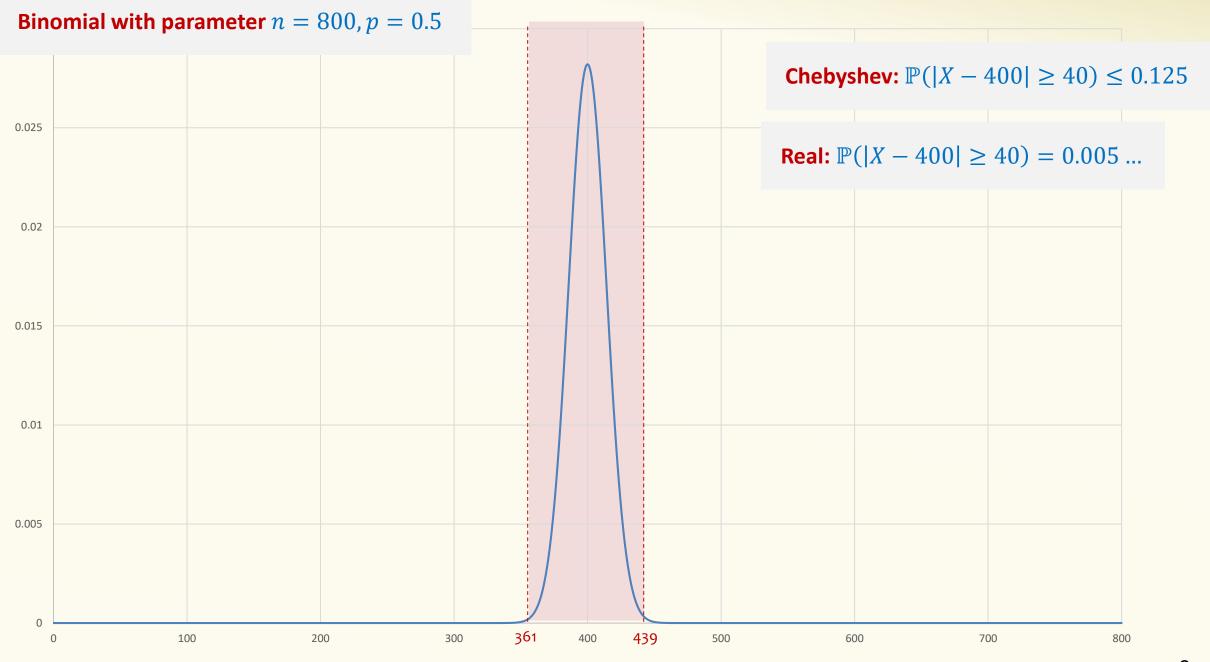
$$\Pr\left(\bigcup_{i=1}^{N} A_i\right) \le \sum_{i=1}^{N} \Pr(A_i) = 0.001N = 0.2$$

Agenda

- Union Bound
- Chernoff Bound
- Application: Polling (again)
- Extra Example: Server Load

Binomial with parameter n = 200, p = 0.5





Chernoff-Hoeffding Bound – Binomial Distribution

Theorem. (CH bound, binomial case) Let X be a binomial RV with parameters p and n. Let $\mu = np = \mathbb{E}(X)$. Then, for any $\epsilon > 0$,

$$\mathbb{P}(|X-\mu| \ge \epsilon \cdot \mu) \le 2e^{-\frac{\epsilon^2 \mu}{2+\epsilon}} = 2e^{-\frac{\epsilon^2 np}{2+\epsilon}}.$$

Binomial: n = 800, $p = 0.5 \rightarrow \mu = np = 400$

Chebyshev: $\mathbb{P}(|X - \mu| \ge 0.1\mu) \le 0.125$

CH:
$$\mathbb{P}(|X - \mu| \ge 0.1\mu) \le 2e^{-\frac{4}{2.1}} = 0.296 \dots$$

Chernoff-Hoeffding Bound – Binomial Distribution

Theorem. (CH bound, binomial case) Let X be a binomial RV with parameters p and n. Let $\mu = np = \mathbb{E}(X)$. Then, for any $\epsilon > 0$,

$$\mathbb{P}(|X - \mu| \ge \epsilon \cdot \mu) \le 2e^{-\frac{\epsilon^2 \mu}{2 + \epsilon}} = 2e^{-\frac{\epsilon^2 np}{2 + \epsilon}}.$$

Binomial: n = 8000, $p = 0.5 \rightarrow \mu = np = 4000$

Chebyshev: $\mathbb{P}(|X - \mu| \ge 0.1\mu) \le 0.0125$

CH:
$$\mathbb{P}(|X - \mu| \ge 0.1\mu) \le 2e^{-\frac{40}{2.1}} \approx 1.7 \times 10^{-8}$$

Chernoff-Hoeffding Bound, beyond Binomial RV

Theorem. Let $X = X_1 + \cdots + X_n$ be a sum of independent RVs, each taking values in [0,1], such that $\mathbb{E}(X) = \mu$. Then, for every $\epsilon > 0$,

$$\mathbb{P}(X \ge (1+\epsilon) \cdot \mu) \le e^{-\frac{\epsilon^2 \mu}{2+\epsilon}}, \qquad \mathbb{P}(X \le (1-\epsilon) \cdot \mu) \le e^{-\frac{\epsilon^2 \mu}{2}}$$

In particular,

$$\mathbb{P}(|X - \mu| \ge \epsilon \cdot \mu) \le 2e^{-\frac{\epsilon^2 \mu}{2 + \epsilon}}$$

Herman Chernoff, Herman Rubin, Wassily Hoeffding

Example: If X binomial w/ parameters n, p, then $X = X_1 + \cdots + X_n$ is a sum of independent $\{0,1\}$ -Bernoulli variables, and $\mu = np$

Agenda

- Union Bound
- Chernoff Bound
- Application: Polling (again)
- Extra Example: Server Load

Application – Polling

We have a (large) population of M CS students.

- A fraction $p \in [0,1]$ supports the introduction of **CSE 313**
 - a harder, follow-up class to CSE 312, with even more math
 - CSE 313 would be a hard requirement for all NLP/ML classes
- We want to estimate p without asking all M students!

How can we do this with enough accuracy? [Say, estimate within absolute error ϵ]

Polling (cont'd)

Solution: For i = 1, ..., n do:

- Pick a random student P_i (out of the M students) and ask them whether they want **CSE 313**
- Let $X_i = 1$ if student P_i wants **CSE 313**, and $X_i = 0$ else.

Output estimate
$$\hat{P} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\mathbb{P}(X_i = 1) = p$$
 $\mathbb{E}(\widehat{P}) = p$ What's the chance $|\widehat{P} - p| \ge \epsilon$

Want:
$$\mathbb{P}(|\hat{P} - p| \ge \epsilon) \le \delta$$

For which *n* is this true?!

Polling (cont'd)
$$\mathbb{P}(X_i = 1) = p$$

$$\mathbb{P}(X_i=1)=p$$

Theorem. Let X be a binomial RV with parameters p and n. Let $\mu = np = \mathbb{E}(X)$. Then, for any $\epsilon > 0$,

$$\mathbb{P}(|X - \mu| \ge \epsilon \cdot \mu) \le 2e^{-\frac{\epsilon^2 \mu}{2 + \epsilon}}.$$

$$\mathbb{P}(|\hat{P} - p| \ge \epsilon) = \mathbb{P}(|n\hat{P} - np| \ge n\epsilon)$$

$$= \mathbb{P}(|\sum_{i=1}^{n} X_{i} - np| \ge n\epsilon)$$

$$= \mathbb{P}(|\sum_{i=1}^{n} X_{i} - np| \ge np \frac{\epsilon}{p})$$

$$\le 2 \exp\left(-\frac{\epsilon^{2}/p^{2}}{2 + \epsilon/p}pn\right)$$

$$= 2 \exp\left(-\frac{\epsilon^{2}}{2p + \epsilon}n\right) \le 2 \exp\left(-\frac{\epsilon^{2}}{2 + \epsilon}n\right)$$

Reminder: $\exp(x) = e^x$

Polling (cont'd)
$$\mathbb{P}(X_i = 1) = p$$

We have proved:

$$\mathbb{P}(|\hat{P} - p| \ge \epsilon) \le 2 \exp\left(-\frac{\epsilon^2}{2 + \epsilon}n\right)$$

We have
$$2 \exp\left(-\frac{\epsilon^2}{2+\epsilon}n\right) \le \delta$$
 if (and only if)

$$n \ge \ln(2/\delta) \frac{2+\epsilon}{\epsilon^2}$$

Polling – Summary

Theorem. (Sampling Theorem) Assume we use independent uniformly random samples to produce an estimate \hat{P} of $p \in [0,1]$. If

$$n \ge \ln(2/\delta) \frac{2+\epsilon}{\epsilon^2},$$

then

$$\mathbb{P}(|\hat{P} - p| \le \epsilon) \ge 1 - \delta.$$

Important: "Sample size" n is <u>independent</u> of the population size, M. Only depends on desired accuracy.

e.g.
$$\epsilon = 0.02$$
, $\delta = 0.05$, $n \ge 15{,}128$

Central question in CS and statistics – can we do better?!
Central question in polling – how can we sample n iid samples?

Agenda

- Union Bound
- Chernoff Bound
- Application: Polling (again)
- Extra Example: Server Load

Why is the Chernoff Bound True?

Theorem. Let $X = X_1 + \cdots + X_n$ be a sum of independent RVs taking values in [0,1] such that $\mathbb{E}(X) = \mu$. Then, for every $\epsilon > 0$,

$$\mathbb{P}(X \ge (1+\epsilon) \cdot \mu) \le e^{-\frac{\epsilon^2 \mu}{2+\epsilon}}, \qquad \mathbb{P}(X \le (1-\epsilon) \cdot \mu) \le e^{-\frac{\epsilon^2 \mu}{2}}$$

Proof strategy: For any t > 0:

•
$$\mathbb{P}(X \ge (1 + \epsilon) \cdot \mu) = \mathbb{P}(e^{tX} \ge e^{t(1+\epsilon)\cdot \mu})$$

• Then, apply Markov + independence:

$$\mathbb{P}(X \ge (1+\epsilon) \cdot \mu) \le \frac{\mathbb{E}(e^{tX})}{e^{t(1+\epsilon)\mu}} = \frac{\mathbb{E}(e^{tX_1}) \cdots \mathbb{E}(e^{tX_n})}{e^{t(1+\epsilon)\mu}}$$

• Find *t* minimizing the right-hand-side.

Application – Distributed Load Balancing

We have k processors, and $n \gg k$ jobs. We want to distribute jobs evenly across processors.

Strategy: Each job assigned to a randomly chosen processor!

$$X_i$$
 = load of processor i $X_i \sim \text{Binomial}(n, 1/k)$ $\mathbb{E}(X_i) = n/k$

 $X = \max\{X_1, \dots, X_k\} = \max \text{ load of a processor}$

Question: How close is X to n/k?

Distributed Load Balancing

Claim. (Load of single server) If $n > 9k \ln k$, then

$$\mathbb{P}\left(X_i > \frac{n}{k} + 3\sqrt{\frac{n\ln k}{k}}\right) = \mathbb{P}\left(X_i > \frac{n}{k}\left(1 + 3\sqrt{\frac{k\ln k}{n}}\right)\right) \le 1/k^3.$$

Example:

- $n = 10^6 \gg k = 1000$
- $\frac{n}{k} + 3\sqrt{n \ln k / k} \approx 1249$
- "The probability that server i processes more than 1249 jobs is at most 1-over-one-billion!"

Distributed Load Balancing

Claim. (Load of single server) If $n > 9k \ln k$, then

$$\mathbb{P}\left(X_i > \frac{n}{k} + 3\sqrt{\frac{n\ln k}{k}}\right) = \mathbb{P}\left(X_i > \frac{n}{k}\left(1 + 3\sqrt{\frac{k\ln k}{n}}\right)\right) \le 1/k^3.$$

Proof. Set
$$\mu = \mathbb{E}(X_i) = \frac{n}{k}$$
 and $\epsilon = 3\sqrt{\frac{k}{n}} \ln k < 3\sqrt{\frac{k}{9k \ln k}} \ln k = 1$

$$\mathbb{P}\left(X_i > \mu\left(1 + 3\sqrt{\frac{k \ln k}{n}}\right)\right) = \mathbb{P}\left(X_i > \mu(1 + \epsilon)\right)$$

$$\leq e^{-\frac{\epsilon^2 \mu}{2 + \epsilon}} < e^{-\frac{\epsilon^2 \mu}{3}} = e^{-3\ln k} = \frac{1}{k^3}$$

What about the maximum load?

Claim. (Load of single server) If $n > 9k \ln k$, then

$$\mathbb{P}\left(X_i > \frac{n}{k} + 3\sqrt{\frac{n\ln k}{k}}\right) \le 1/k^3.$$

What about $X = \max\{X_1, ..., X_k\}$?

Note: $X_1, ..., X_k$ are not (mutually) independent!

In particular:
$$X_1 + \cdots + X_k = n$$

When non-trivial outcome of one RV can be derived from other RVs, they are non-independent.

Distributed Load Balancing

Claim. (Load of single server) If $n > 9k \ln k$, then

$$\mathbb{P}\left(X_i > \frac{n}{k} + 3\sqrt{n \ln k / k}\right) \le 1/k^3.$$

Claim. (Max load) Let
$$X = \max\{X_1, ..., X_k\}$$
. If $n > 9k \ln k$, then
$$\mathbb{P}\left(X > \frac{n}{k} + 3\sqrt{n \ln k / k}\right) \le 1/k^2.$$

Union Bound: $\mathbb{P}(A_1 \cup A_2 \cdots \cup A_n) \leq \Sigma_i \mathbb{P}(A_i)$

Always holds. No assumption on A_i 's

Distributed Load Balancing

Claim. (Load of single server) If $n > 9k \ln k$, then

$$\mathbb{P}\left(X_i > \frac{n}{k} + 3\sqrt{n \ln k / k}\right) \le 1/k^3.$$

Claim. (Max load) Let
$$X = \max\{X_1, ..., X_k\}$$
. If $n > 9k \ln k$, then
$$\mathbb{P}\left(X > \frac{n}{k} + 3\sqrt{n \ln k / k}\right) \le 1/k^2.$$

Union Bound: $\mathbb{P}(A_1 \cup A_2 \cdots \cup A_n) \leq \Sigma_i \mathbb{P}(A_i)$ Proof.

$$\mathbb{P}\left(X > \frac{n}{k} + 3\sqrt{n\ln k/k}\right) = \mathbb{P}\left(\left\{X_1 > \frac{n}{k} + 3\sqrt{n\ln k/k}\right\} \cup \dots \cup \left\{X_k > \frac{n}{k} + 3\sqrt{n\ln k/k}\right\}\right)$$

$$\leq \mathbb{P}\left(X_1 > \frac{n}{k} + 3\sqrt{\frac{n\ln k}{k}}\right) + \dots + \mathbb{P}\left(X_k > \frac{n}{k} + 3\sqrt{n\ln k/k}\right) \leq k \cdot \frac{1}{k^3} = 1/k^2$$