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Review – Continuous RVs
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Probability Density Function (PDF).

𝑓:ℝ → ℝ s.t.

• 𝑓 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

• ∞−׬
+∞

𝑓 𝑥 d𝑥 = 1

Cumulative Density Function (CDF).

𝐹 𝑦 = න
−∞

𝑦

𝑓(𝑥) d𝑥

Theorem. 𝑓 𝑥 =
𝑑𝐹(𝑥)

𝑑𝑥

𝑓(𝑥)

= 1

𝐹(𝑦)

𝑦

Density ≠ Probability ! 𝐹 𝑦 = ℙ 𝑋 ≤ 𝑦



Review – Continuous RVs
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𝑓𝑋(𝑥)

𝑎 𝑏

ℙ 𝑋 ∈ [𝑎, 𝑏] = න
𝑎

𝑏

𝑓𝑋 𝑥 d𝑥 = 𝐹𝑋 𝑏 − 𝐹𝑋(𝑎)



Exponential Distribution

Definition. An exponential random variable 𝑋 with parameter 𝜆 ≥ 0 is 
follows the exponential density

𝑓𝑋 𝑥 = ቊ𝜆𝑒
−𝜆𝑥 𝑥 ≥ 0
0 𝑥 < 0

CDF: For 𝑦 ≥ 0,
𝐹𝑋 𝑦 = 1 − 𝑒−𝜆𝑦

We write 𝑋 ∼ Exp 𝜆 and say 𝑋 that follows the exponential distribution.
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Agenda

• Normal Distribution

• Practice with Normals

• Central Limit Theorem (CLT)
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The Normal Distribution
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Definition. A Gaussian (or normal) random variable with 
parameters 𝜇 ∈ ℝ and 𝜎 ≥ 0 has density

𝑓𝑋 𝑥 =
1

2𝜋𝜎
𝑒
−

𝑥−𝜇 2

2𝜎2

(We say that 𝑋 follows the Normal Distribution, and write 𝑋 ∼ 𝒩(𝜇, 𝜎2)) 

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎2 , then 𝔼 𝑋 = 𝜇, and Var 𝑋 = 𝜎2

Proof is easy because density curve is symmetric around 𝜇, 𝑓𝑋 𝜇 − 𝑥 = 𝑓𝑋(𝜇 + 𝑥)



The Normal Distribution
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Shifting and Scaling – turning one normal dist into another  

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎2 , then 𝑌 = 𝑎𝑋 + 𝑏 ∼ 𝒩 𝑎𝜇 + 𝑏, 𝑎2𝜎2
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𝔼 𝑌 = 𝑎 𝔼 𝑋 + 𝑏 = 𝑎𝜇 + 𝑏

Var 𝑌 = 𝑎2 Var 𝑋 = 𝑎2𝜎2

Proof. 

Can show with algebra that the PDF of 
𝑌 = 𝑎𝑋 + 𝑏 is still normal.



CDF of normal distribution
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Standard (unit) normal = 𝒩 0, 1

CDF. Φ 𝑧 = ℙ 𝑍 ≤ 𝑧 =
1

2𝜋
∞−׬
𝑧
𝑒−𝑥

2/2d𝑥 for 𝑍 ∼ 𝒩 0, 1

Note: Φ 𝑧 has no closed form – generally given via tables 

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎2 , then 𝑌 = 𝑎𝑋 + 𝑏 ∼ 𝒩 𝑎𝜇 + 𝑏, 𝑎2𝜎2



Table of Standard Cumulative Normal Density
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ℙ 𝑍 ≤ 1.09

ℙ 𝑍 ≤ −1.09 ?
What is

Poll: 
pollev.com/hunter312
a. 0.1379
b. 0.8621
c. 0
d. Not able to compute

= Φ 1.09 ≈ 0.8621



Closure of the normal -- under addition

Fact. If 𝑋 ∼ 𝒩 𝜇𝑋, 𝜎𝑋
2 , Y ∼ 𝒩 𝜇𝑌, 𝜎𝑌

2 (both independent normal RV) 

then a𝑋 + 𝑏𝑌 + 𝑐 ∼ 𝒩 𝑎𝜇𝑋 + 𝑏𝜇𝑌 + 𝑐, 𝑎2𝜎𝑋
2 + 𝑏2𝜎𝑌

2

Note: The special thing is that the sum of normal RVs is still a normal RV.

The values of the expectation and variance is not surprising. Why?
• Linearity of expectation (always true) 
• When 𝑋 and 𝑌 are independent, 𝑉𝑎𝑟 𝑎𝑋 + 𝑏𝑌 = 𝑎2𝑉𝑎𝑟 𝑋 + 𝑏2𝑉𝑎𝑟(𝑌)



Brain Break

Normal Distribution Paranormal Distribution



Agenda

• Normal Distribution

• Practice with Normals

• Central Limit Theorem (CLT)
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What about Non-standard normal?
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If 𝑋 ∼ 𝒩 𝜇, 𝜎2 , then  
𝑋 −𝜇

𝜎
∼ 𝒩(0, 1)

Therefore, 

𝐹𝑋 𝑧 = ℙ 𝑋 ≤ 𝑧 = ℙ
𝑋 − 𝜇

𝜎
≤
𝑧 − 𝜇

𝜎
= Φ

𝑧 − 𝜇

𝜎



Example

Let 𝑋 ∼ 𝒩 0.4, 4 = 22 .  
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ℙ 𝑋 ≤ 1.2 = ℙ
𝑋 − 0.4

2
≤
1.2 − 0.4

2

= ℙ
𝑋 − 0.4

2
≤ 0.4

∼ 𝒩 0, 1

= Φ(0.4) ≈ 0.6554



Example

Let 𝑋 ∼ 𝒩 3, 16 .  
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ℙ 2 < 𝑋 < 5 = ℙ
2 − 3

4
<
𝑋 − 3

4
<
5 − 3

4

= ℙ −
1

4
< 𝑍 <

1

2

= Φ
1

2
− Φ −

1

4

≈ 0.29017= Φ
1

2
− 1 − Φ

1

4



Example – Off by Standard Deviations
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Let 𝑋 ∼ 𝒩 𝜇, 𝜎2 .  

ℙ 𝑋 − 𝜇 < 𝑘𝜎 = ℙ
𝑋 − 𝜇

𝜎
< 𝑘 =

= ℙ −𝑘 <
𝑋 − 𝜇

𝜎
< 𝑘 = Φ 𝑘 −Φ(−𝑘)

e.g. 𝑘 = 1: 68%, 𝑘 = 2: 95%, 𝑘 = 3: 99%



Agenda

• Normal Distribution

• Practice with Normals

• Central Limit Theorem (CLT)
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Gaussian in Nature

Empirical distribution of collected data often resembles a Gaussian … 
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e.g. Height distribution resembles 
Gaussian.

R.A.Fisher (1918) observed that the 
height is likely the outcome of the 
sum of many independent random 
parameters, i.e., can written as

𝑋 = 𝑋1 +⋯+ 𝑋𝑛



Sum of Independent RVs
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𝑋1, … , 𝑋𝑛 i.i.d. with expectation 𝜇 and variance 𝜎2

i.i.d. = independent and identically distributed

Define

𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛

𝔼 𝑆𝑛 =

Var(𝑆𝑛) =

𝔼 𝑋1 +⋯+ 𝔼 𝑋𝑛 = 𝑛𝜇

Var 𝑋1 +⋯+ Var 𝑋𝑛 = 𝑛𝜎2

Empirical observation: 𝑆𝑛 looks like a normal RV as 𝑛 grows. 



CLT (Idea)

21
From: https://courses.cs.washington.edu/courses/cse312/17wi/slides/10limits.pdf

https://courses.cs.washington.edu/courses/cse312/17wi/slides/10limits.pdf


CLT (Idea)
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From: https://courses.cs.washington.edu/courses/cse312/17wi/slides/10limits.pdf

https://courses.cs.washington.edu/courses/cse312/17wi/slides/10limits.pdf


Central Limit Theorem
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𝑋1, … , 𝑋𝑛 i.i.d., each with expectation 𝜇 and variance 𝜎2

Define 𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛 and

𝑌𝑛 =
𝑆𝑛 − 𝑛𝜇

𝜎 𝑛

𝔼 𝑌𝑛 =

Var(𝑌𝑛) =

1

𝜎 𝑛
𝔼(𝑆𝑛) − 𝑛𝜇 =

1

𝜎 𝑛
𝑛𝜇 − 𝑛𝜇 = 0

1

𝜎2𝑛
Var 𝑆𝑛 − 𝑛𝜇 =

Var(𝑆𝑛)

𝜎2𝑛
=
𝜎2𝑛

𝜎2𝑛
= 1



Central Limit Theorem
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Theorem. (Central Limit Theorem) The CDF of 𝑌𝑛 converges to the 
CDF of the standard normal 𝒩(0,1), i.e.,

lim
𝑛→∞

ℙ 𝑌𝑛 ≤ 𝑦 =
1

2𝜋
න
−∞

𝑦

𝑒−𝑥
2/2d𝑥

𝑌𝑛 =
𝑋1 +⋯+ 𝑋𝑛 − 𝑛𝜇

𝜎 𝑛



CLT → Normal Distribution EVERYWHERE
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Neuron Activity

S&P 500 Returns after Elections

Vegetables

Examples from: 
https://galtonboard.com/probabilityexamplesinlife


