CSE 312 Foundations of Computing II

Lecture 14: Continuous RV

Rachel Lin, Hunter Schafer

1

Slide Credit: Based on Stefano Tessaro's slides for 312 19au

incorporating ideas from Alex Tsun's and Anna Karlin's slides for 312 20su and 20au

Agenda

Continuous Random Variables

- Probability Density Function
- Cumulative Distribution Function

Often we want to model experiments where the outcome is <u>not</u> discrete.

Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every time within [0,1] is equally likely

- Time measured with infinitesimal precision.

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

 $\mathbb{P}(0.2 \le T \le 0.5) = 0.5 - 0.2 = 0.3$

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

Bottom line

- This gives rise to a different type of random variable
- $\mathbb{P}(T = x) = 0$ for all $x \in [0,1]$
- Yet, somehow we want

```
-\mathbb{P}(T\in[0,1])=1
```

 $-\mathbb{P}(T\in[a,b])=b-a$

— ...

• How do we model the behavior of *T*?

Definition. A continuous random variable *X* is defined by a probability density function (PDF) $f_X : \mathbb{R} \to \mathbb{R}$, such that

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) \, \mathrm{d}x = 0$$

Definition. A continuous random variable *X* is defined by a probability density function (PDF) $f_X : \mathbb{R} \to \mathbb{R}$, such that

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$ Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$ $P(a \le X \le b) = \int_{-\infty}^{b} f_X(x) \, \mathrm{d}x$ $P(X = y) = P(y \le X \le y) = \int_{0}^{y} f_X(x) \, dx = 0$ $P(X \approx y) \approx P\left(y - \frac{\epsilon}{2} \le X \le y + \frac{\epsilon}{2}\right) = \int_{y - \frac{\epsilon}{2}}^{y + \frac{\epsilon}{2}} f_X(x) \, \mathrm{d}x \approx \epsilon f_X(y)$ $\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_X(y)}{\epsilon f_Y(z)} = \frac{f_X(y)}{f_Y(z)}$

14

PDF of Uniform RV

$X \sim \text{Unif}(0,1)$ **Non-negativity:** $f_X(x) \ge 0$ for all $x \in \mathbb{R}$ Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$ $f_X(x) = \begin{cases} 1, & x \in [0,1] \\ 0, & x \notin [0,1] \end{cases}$ 1 $\int_{-\infty}^{+\infty} f_X(x) \, \mathrm{d}x = \int_{0}^{1} f_X(x) \, \mathrm{d}x = 1 \cdot 1 = 1$ 0 16

Probability of Event

Probability of Event

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is $F_X(a) = \mathbb{P}(X \le a) = \int_{-\infty}^a f_X(x) \, \mathrm{d}x$

By the fundamental theorem of Calculus $f_X(x) = \frac{a}{dx}F(x)$

Therefore: $\mathbb{P}(X \in [a, b]) = F(b) - F(a)$

 F_X is monotone increasing, since $f_X(x) \ge 0$. That is $F_X(c) \le F_X(d)$ for $c \le d$

$$\lim_{a \to -\infty} F_X(a) = P(X \le -\infty) = 0 \quad \lim_{a \to +\infty} F_X(a) = P(X \le +\infty) = 1$$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_X(x) = P(X = x)$	$f_X(x) \neq P(X = x) = 0$
CDF	$F_X(x) = \sum_{t \le x} p_X(t)$	$F_{X}(x) = \int_{-\infty}^{x} f_{X}(t) dt$
Normalization	$\sum_{x} p_X(x) = 1$	$\int_{-\infty}^{\infty} f_X(x) dx = 1$
Expectation	$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$

Expectation of a Continuous RV

Definition. The **expected value** of a continuous RV *X* is defined as

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, \mathrm{d}x$$

Fact. $\mathbb{E}(aX + bY + c) = a\mathbb{E}(X) + b\mathbb{E}(Y) + c$

Definition. The variance of a continuous RV X is defined as $Var(X) = \int_{-\infty}^{+\infty} f_X(x) \cdot (x - \mathbb{E}(X))^2 dx = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Uniform Density – Expectation

 $X \sim \text{Unif}(a, b)$

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, dx$$

= $\frac{1}{b-a} \int_a^b x \, dx = \frac{1}{b-a} \left(\frac{x^2}{2}\right) \Big|_a^b = \frac{1}{b-a} \left(\frac{b^2 - a^2}{2}\right)$
= $\frac{(b-a)(a+b)}{2(b-a)} = \frac{a+b}{2}$

Uniform Density – Variance

 $X \sim \text{Unif}(a, b)$

$$\mathbb{E}(X^2) = \int_{-\infty}^{+\infty} f_X(x) \cdot x^2 \, \mathrm{d}x$$

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$

$$= \frac{1}{b-a} \int_{a}^{b} x^{2} dx = \frac{1}{b-a} \left(\frac{x^{3}}{3}\right) \Big|_{a}^{b} = \frac{b^{3}-a^{3}}{3(b-a)}$$
$$= \frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)} = \frac{b^{2}+ab+a^{2}}{3}$$

Uniform Density – Variance

$$X \sim \text{Unif}(a, b)$$

$$\mathbb{E}(X^2) = \frac{b^2 + ab + a^2}{3}$$
 $\mathbb{E}(X) = \frac{a+b}{2}$

$$Var(X) = \mathbb{E}(X^{2}) - \mathbb{E}(X)^{2}$$
$$= \frac{b^{2} + ab + a^{2}}{3} - \frac{a^{2} + 2ab + b^{2}}{4}$$
$$= \frac{4b^{2} + 4ab + 4a^{2}}{12} - \frac{3a^{2} + 6ab + 3b^{2}}{12}$$
$$= \frac{b^{2} - 2ab + a^{2}}{12} = \frac{(b - a)^{2}}{12}$$