CSE 312 Foundations of Computing II

Lecture 13: Poisson Distribution

Rachel Lin, Hunter Schafer

1

Slide Credit: Based on Stefano Tessaro's slides for 312 19au

incorporating ideas from Alex Tsun's and Anna Karlin's slides for 312 20su and 20au

Zoo of Discrete RVs!

$X \sim \text{Unif}(a, b)$	$X \sim \operatorname{Ber}(p)$	$X \sim \operatorname{Bin}(n, p)$
$P(X=k) = \frac{1}{b - a + 1}$	P(X = 1) = p, P(X = 0) = 1 - p	$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$
$E[X] = \frac{a+b}{2}$	E[X] = p	E[X] = np
$Var(X) = \frac{(b-a)(b-a+2)}{12}$	Var(X) = p(1-p)	Var(X) = np(1-p)
$X \sim Goo(n)$	$X \sim NogRin(r, n)$	$Y \sim HypCoo(N K m)$
$X \sim \operatorname{deo}(p)$	$X \sim \operatorname{NegDiff}(T, p)$	$X \sim \operatorname{HypGeO}(N, K, n)$
$P(X = k) = (1 - p)^{k - 1}p$	$P(X = k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}$	$P(X = k) = \frac{\binom{N}{k}\binom{N-K}{n-k}}{\binom{N}{k}}$
$E[X] = \frac{1}{n}$	$E[X] = \frac{r}{r}$	K
$Var(X) = \frac{1-p}{1-p}$	$\frac{p}{r(1-p)}$	$E[X] = n \frac{1}{N} K(N - K)(N - n)$
p^2	$Var(X) = \frac{1}{p^2}$	$Var(X) = n \frac{n(N-N)(N-N)}{N^2(N-1)}$

Agenda

• Poisson Distribution

• Approximate Poisson distribution using Binomial distribution

Poisson Distribution

- Suppose "events" happen, independently, at an *average* rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted X ~ Poi(λ)) and has distribution (PMF):

$$\mathbb{P}(X=i)=e^{-\lambda}\cdot\frac{\lambda^i}{i!}$$

Several examples of "Poisson processes":

- # of cars passing through a traffic light in 1 hour
- # of requests to web servers in an hour
- # of photons hitting a light detector in a given interval
- # of patients arriving to ER within an hour

Probability Mass Function

Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.

Expectation

Theorem. If X is a Poisson RV with parameter λ , then $\mathbb{E}(X) = \lambda$

Pr

roof.
$$\mathbb{E}(X) = \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i = \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!}$$
$$= \lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!}$$
$$= \lambda \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} = \lambda \cdot 1 = \lambda$$

7

Variance

Theorem. If X is a Poisson RV with parameter λ , then $Var(X) = \lambda$

Proof.
$$\mathbb{E}(X^{2}) = \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2} = \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} i$$
$$= \lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i = \lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot (j+1)$$
$$= \lambda \left[\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot j + \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \right] = \lambda^{2} + \lambda$$
Similar to the previous proof Verify offline.
$$\mathbb{E}(X) = \lambda = 1$$
$$\mathbb{E}(X^{2}) - \mathbb{E}(X)^{2} = \lambda^{2} + \lambda - \lambda^{2} = \lambda$$

8

<u>Photo</u> by Unknown Author ensed under <u>CC BY-SA</u>

Poisson Random Variables

Definition. A **Poisson random variable** *X* with parameter $\lambda \ge 0$ is such that for all i = 0, 1, 2, 3 ...,

$$\mathbb{P}(X=i)=e^{-\lambda}\cdot\frac{\lambda^{\iota}}{i!}$$

Poisson approximates binomial when n is very large, p is very small, and $\lambda = np$ is "moderate" (e.g. n > 20 and p < 0.05, n > 100 and p < 0.1)

Formally, Binomial is Poisson in the limit as $n \rightarrow \infty$ (equivalently, $p \rightarrow 0$) while holding $np = \lambda$

This Photo by Unknown Author is licensed under <u>CC BY-NC</u> 10

Example – How to model the process of cars passing through a light?

X = # cars passing through a light in 1 hour Know: $\mathbb{E}(X) = \lambda$ for some given $\lambda > 0$ 1 hour **Discretize problem:** *n* intervals, each of length $\frac{1}{n}$. In each interval, a car passes by with probability $\frac{1}{2}$ **Bernoulli** $X_i = 1$ if car in *i*-th interval (0 otherwise). $\mathbb{P}(X_i = 1) = \frac{\lambda_i}{n}$ $X = \sum_{i=1}^{n} X_{i} \qquad X \sim \text{binomial(n,p)} \qquad \mathbb{P}(X = i) = {\binom{n}{i}}^{n} \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$ indeed! $\mathbb{E}(X) = \lambda$ 11

We want now $n \rightarrow \infty$

$$\mathbb{P}(X=i) = {\binom{n}{i}} {\binom{\lambda}{n}}^{i} {\left(1-\frac{\lambda}{n}\right)}^{n-i} = \frac{n!}{(n-i)! n^{i}} \frac{\lambda^{i}}{i!} {\left(1-\frac{\lambda}{n}\right)}^{n} {\left(1-\frac{\lambda}{n}\right)}^{-i}$$

$$\rightarrow \mathbb{P}(X=i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$
¹²

Probability Mass Function – Convergence of Binomials

13

Expectation and Variance of Poisson

$$X \sim \operatorname{Bin}(n, p)$$

$$P(X = k) = {\binom{n}{k}} p^{k} (1-p)^{n-k}$$

$$E[X] = np$$

$$Var(X) = np(1-p)$$

$$N \to \infty$$

$$p = \lambda/n$$

$$P(X = k) = e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}$$

$$E[X] = \lambda$$

$$Var(X) = \lambda$$

Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

- Send bit string of length n = 10⁴
- Probability of (independent) bit corruption is $p = 10^{-6}$
- What is probability that message arrives uncorrupted?

Using X ~ Poi(
$$\lambda = np = 10^4 \cdot 10^{-6} = 0.01$$
)
 $\mathbb{P}(X = 0) = e^{-\lambda} \cdot \frac{\lambda^0}{0!} = e^{-0.01} \cdot \frac{0.01^0}{0!} = 0.990049834$

Using Y ~ Bin(10⁴, 10⁻⁶) $\mathbb{P}(Y = 0) \approx 0.990049829$

Sum of Independent Poisson RVs

Theorem. Let $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$. Let Z = (X + Y). For all z = 0, 1, 2, 3 ...,

$$\mathbb{P}(Z=z)=e^{-\lambda}\cdot\frac{\lambda^2}{z!}$$

More generally, let $X_1 \sim Poi(\lambda_1), \dots, X_n \sim Poi(\lambda_n)$ such that $\lambda = \sum_i \lambda_i$. Let $Z = \sum_i X_i$

$$\mathbb{P}(Z=z)=e^{-\lambda}\cdot\frac{\lambda^{z}}{z!}$$

17

Sum of Independent Poisson RVs

Theorem. Let $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$. Let Z = (X + Y). For all z = 0, 1, 2, 3 ...,

$$\mathbb{P}(Z=z) = e^{-\lambda} \cdot \frac{\lambda^2}{z!}$$

$$\mathbb{P}(Z = z) = ?$$
1. $\mathbb{P}(Z = z) = \sum_{j=0}^{Z} \mathbb{P}(X = j, Y = z - j)$
2. $\mathbb{P}(Z = z) = \sum_{j=0}^{\infty} \mathbb{P}(X = j, Y = z - j)$
3. $\mathbb{P}(Z = z) = \sum_{j=0}^{Z} \mathbb{P}(Y = z - j | X = j) \mathbb{P}(X = j)$
4. $\mathbb{P}(Z = z) = \sum_{j=0}^{Z} \mathbb{P}(Y = z - j | X = j)$

Poll: pollev/rachel312

- A. All of them are right
- B. The first 3 are right
- C. Only 1 is right
- D. Don't know

$$\mathbb{P}(Z = z) = \sum_{j=0}^{k} \mathbb{P}(X = j, Y = z - j) \qquad \text{Law of total probability}$$

$$= \sum_{j=0}^{k} \mathbb{P}(X = j) \mathbb{P}(Y = z - j) = \sum_{j=0}^{k} e^{-\lambda_{1}} \cdot \frac{\lambda_{1}^{j}}{j!} \cdot e^{-\lambda_{2}} \cdot \frac{\lambda_{2}^{z-j}}{z - j!} \qquad \text{Independence}$$

$$= e^{-\lambda} \left(\sum_{j=0}^{k} \cdot \frac{1}{j! z - j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j} \right)$$

$$= e^{-\lambda} \left(\sum_{j=0}^{k} \frac{z!}{j! z - j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j} \right) \frac{1}{z!} \qquad \text{Binomial}$$

$$= e^{-\lambda} \cdot (\lambda_{1} + \lambda_{2})^{z} \cdot \frac{1}{z!} = e^{-\lambda} \cdot \lambda^{z} \cdot \frac{1}{z!}$$

Poisson Random Variables

Definition. A Poisson random variable *X* with parameter $\lambda \ge 0$ is such that for all i = 0, 1, 2, 3 ...,

$$\mathbb{P}(X=i)=e^{-\lambda}\cdot\frac{\lambda^{i}}{i!}$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to Poi(λ)

Several examples of "Poisson processes":

- # of cars passing through a traffic light in 1 hour
- # of requests to web servers in an hour
- # of photons hitting a light detector in a given interval
- # of patients arriving to ER within an hour

Next

- Continuous Random Variables

- Probability Density Function
- Cumulative Density Function

Often we want to model experiments where the outcome is <u>not</u> discrete.

Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every time within [0,1] is equally likely

- Time measured with infinitesimal precision.

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

Bottom line

- This gives rise to a different type of random variable
- $\mathbb{P}(T = x) = 0$ for all $x \in [0,1]$
- Yet, somehow we want

```
-\mathbb{P}(T\in[0,1])=1
```

 $-\mathbb{P}(T\in [a,b])=b-a$

- ...

• How do we model the behavior of *T*?