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Lecture 13: Poisson Distribution
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Slide Credit: Based on Stefano Tessaro’s slides for 312 19au 
incorporating ideas from Alex Tsun’s and Anna Karlin’s slides for 312 20su and 20au
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Agenda

• Poisson Distribution
• Approximate Poisson distribution using Binomial distribution 
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Poisson Distribution

• Suppose “events” happen, independently, at an average rate of λ per 
unit time.

• Let X be the actual number of events happening in a given time 
unit. Then X is a Poisson r.v. with parameter λ (denoted X ~ Poi(λ)) 
and has distribution (PMF):
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ℙ " = $ = %&' ⋅ ')*!
Several examples of “Poisson processes”:
• # of cars passing through a traffic light in 1 hour
• # of requests to web servers in an hour
• # of photons hitting a light detector in a given interval
• # of patients arriving to ER within an hour

Siméon Denis Poisson
1781-1840



Probability Mass Function 
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https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/


Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.
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Expectation
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Theorem. If ! is a Poisson RV with parameter ", then
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Variance
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Theorem. If ! is a Poisson RV with parameter ", then Var(!) = "
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Similar to the previous proof 
Verify offline. 
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This Photo by Unknown Author 
is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Bao_Bao
https://creativecommons.org/licenses/by-sa/3.0/


Poisson Random Variables
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Definition. A Poisson random variable ! with parameter " ≥ 0 is such 
that for all % = 0,1,2,3 …,

ℙ ! = % = -./ ⋅ /
1

2!

This Photo by Unknown Author is licensed 
under CC BY-NC

Poisson approximates binomial when n is very large, p is very small, and λ 
= np is “moderate” (e.g. n > 20 and p < 0.05,   n > 100 and p < 0.1)

Formally, Binomial is Poisson in the limit as 
n → ∞ (equivalently, p → 0) while holding np = λ

https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/
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Example – How to model the process of cars passing through a light?

! = # cars passing through a light in 1 hour
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Know: # ! = % for some given % > 0
1 hour

Discretize problem: ( intervals, each of length )* . 

In each interval, a car passes by with probability +*
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Don’t like discretization
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We want now ! → ∞
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Probability Mass Function – Convergence of Binomials
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Expectation and Variance of Poisson
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Example -- Approximate Binomial Using Poisson 

Consider sending bit string over a network
• Send bit string of length n = 104

• Probability of (independent) bit corruption is p = 10-6

• What is probability that message arrives uncorrupted?

Using X ~ Poi(λ = np = 104•10-6 = 0.01)

Using Y ~ Bin(104, 10-6)
ℙ(# = 0) ≈ 0.990049829
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Sum of Independent Poisson RVs 
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Theorem. Let !~#$%('() and *~#$%('+) such that ' = '( + '+. 
Let Z = ! + * . For all / = 0,1,2,3 …,
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Sum of Independent Poisson RVs 
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Theorem. Let !~#$%('() and *~#$%('+) such that ' = '( + '+. 

Let Z = ! + * . For all / = 0,1,2,3 …,

ℙ 7 = / = 89: ⋅ :
<

=!

ℙ 7 = / = ?
1. ℙ 7 = / = ΣBCD= ℙ ! = E, * = / − E
2. ℙ 7 = / = ΣBCDG ℙ ! = E, * = / − E
3. ℙ 7 = / = ΣBCD= ℙ * = / − E|! = E ℙ(! = E)
4. ℙ 7 = / = ΣBCD= ℙ * = / − E|! = E

Poll:  pollev/rachel312
A. All of them are right 
B. The first 3 are right 
C. Only 1 is right
D. Don’t know 
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General principle: 
• Events happen at an average rate 

of ! per time unit 
• Number of events happening at a 

time unit X is distributed 
according to Poi(!) 

Definition. A Poisson random variable " with parameter ! ≥ 0 is such 
that for all % = 0,1,2,3 …,

ℙ " = % = -./ ⋅ /
1

2!

Several examples of “Poisson processes”:
• # of cars passing through a traffic light in 1 hour
• # of requests to web servers in an hour
• # of photons hitting a light detector 

in a given interval
• # of patients arriving to ER within an hour

Poisson Random Variables



Next

• Continuous Random Variables
• Probability Density Function 
• Cumulative Density Function
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Often we want to model experiments where the outcome is 
not discrete.



Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame
• ! = time of lightning strike
• Every time within [0,1] is equally likely
– Time measured with infinitesimal precision.
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0 1! = 0.71237131931129576…

The outcome space is not discrete
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Lightning strikes a pole within a one-minute time frame
• ! = time of lightning strike
• Every point in time within [0,1] is equally likely

0 10.5

½
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Lightning strikes a pole within a one-minute time frame
• ! = time of lightning strike
• Every point in time within [0,1] is equally likely

ℙ 0.2 ≤ ! ≤ 0.5 =

0 10.5

0.5 − 0.2 = 0.3

0.2
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Lightning strikes a pole within a one-minute time frame
• ! = time of lightning strike
• Every point in time within [0,1] is equally likely

ℙ ! = 0.5 =
0 10.5

0



Bottom line

• This gives rise to a different type of random variable
• ℙ " = $ = 0 for all $ ∈ [0,1]
• Yet, somehow we want
– ℙ " ∈ [0,1] = 1
– ℙ " ∈ [+, ,] = , − +
– …

• How do we model the behavior of "?
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