CSE 312 Foundations of Computing II

Lecture 11: Variance and Independence of RVs

PAUL G. ALLEN SCHOOL Rachel Lin, Hunter Schafer OF COMPUTER SCIENCE & ENGINEERING Rachel Lin, Hunter Schafer

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun's and Anna Karlin's slides for 312 20su and 20au

Recap Linearity of Expectation

Theorem. For any two random variables *X* and *Y* (*X*, *Y* do not need to be independent)

 $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y).$

Theorem. For any random variables X_1, \ldots, X_n , and real numbers $a_1, \ldots, a_n \in \mathbb{R}$,

$$\mathbb{E}(a_1X_1 + \dots + a_nX_n) = a_1\mathbb{E}(X_1) + \dots + a_n\mathbb{E}(X_n).$$

For any event A, can define the indicator random variable X for A $X = \begin{cases} 1 & if event A occurs \\ 0 & if event A does not occur \end{cases}$

 $\mathbb{P}(X = 1) = \mathbb{P}(A)$ $\mathbb{P}(X = 0) = 1 - \mathbb{P}(A)$

Recap Linearity is special!

In general
$$\mathbb{E}(g(X)) \neq g(\mathbb{E}(X))$$

E.g., $X = \begin{cases} 1 \text{ with prob } 1/2 \\ -1 \text{ with prob } 1/2 \end{cases}$

- $\circ \quad \mathbb{E}(XY) \neq \mathbb{E}(X)\mathbb{E}(Y)$
- $\circ \quad \mathbb{E}(X/Y) \neq \mathbb{E}(X)/\mathbb{E}(Y)$
- $\circ \quad \mathbb{E}(X^2) \neq \mathbb{E}(X)^2$

How DO we compute $\mathbb{E}(g(X))$?

Recap Expectation of g(X)

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of X is

$$\mathbf{E}[X] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot \Pr(\omega)$$

or equivalently

$$\mathbf{E}[X] = \sum_{x \in X(\Omega)} g(x) \cdot \Pr(X = x)$$

Example: Expectation of g(X)

Suppose we rolled a fair, 6-sided die in a game. You will win the square number rolled dollars, times 10. Let X be the result of the dice roll. What is your expected winnings?

 $E[10X^{2}] =$

Agenda

- Variance <
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Two Games

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}$$
, $\mathbb{P}(W_1 = -1) = \frac{2}{3}$

$$\mathbb{E}(W_1)=0$$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

 W_2 = payoff in a round of Game 2 $\mathbb{P}(W_2 = 10) = \frac{1}{3}$, $\mathbb{P}(W_2 = -5) = \frac{2}{3}$ Which game would you <u>rather play</u>?

 $\mathbb{E}(W_2)=0$

Somehow, Game 2 has higher volatility / exposure!

Same expectation, but clearly very different distribution. We want to capture the difference – New concept: Variance

Variance (Intuition, First Try)

$$\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$$

$$\frac{1}{2/3} = \frac{1}{1} = \frac{1}{1} = \frac{1}{2}$$

$$\frac{1}{2/3} = \frac{1}{1} = \frac{1}{2} = \frac{1}{1} = \frac{1}{2}$$

New quantity (random variable): How far from the expectation? $\Delta(W_1) = W_1 - E[W_1]$

$$E[\Delta(W_1)] = E[W_1 - E[W_1]]$$

= $E[W_1] - E[E[W_1]]$
= $E[W_1] - E[W_1]$
= 0

Variance (Intuition, Better Try) $\mathbb{P}(W_1 = 2) = \frac{1}{3}, \mathbb{P}(W_1 = -1) = \frac{2}{3}$ $\frac{2/3}{-1} = 0$ $\frac{2}{3}$

A better quantity (random variable): How far from the expectation? $\Delta(W_1) = (W_1 - E[W_1])^2$ $\mathbb{P}(\Delta(W_1) = 1) = \frac{2}{3}$ $\mathbb{P}(\Delta(W_1) = 4) = \frac{1}{3}$ $E[\Delta(W_1)] = E[(W_1 - E[W_1])^2]$ $= \frac{2}{3} \cdot 1 + \frac{1}{3} \cdot 4$

= 2

A better quantity (random variable): How far from the expectation?

$$\Delta(W_2) = (W_2 - E[W_2])^2$$

$$\mathbb{P}(\Delta(W_2) = 25) = \frac{2}{3}$$

$$\mathbb{P}(\Delta(W_2) = 100) = \frac{1}{3}$$

$$E[\Delta(W_2)] = E[(W_2 - E[W_2])^2]$$
$$= \frac{2}{3} \cdot 25 + \frac{1}{3} \cdot 100$$
$$= 50$$

Poll: pollev.com/hunter312

2500

11

Α.

0

B. 20/3

C. 50

D.

We say that W_2 has "higher variance" than W_1 .

Variance

<u>Intuition:</u> Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = 3.5$

$$Var(X) = \sum_{x} \mathbb{P}(X = x) \cdot (x - \mathbb{E}(X))^{2}$$
$$= \frac{1}{6} [(1 - 3.5)^{2} + (2 - 3.5)^{2} + (3 - 3.5)^{2} + (4 - 3.5)^{2} + (5 - 3.5)^{2} + (6 - 3.5)^{2}]$$

$$= \frac{2}{6} [2.5^2 + 1.5^2 + 0.5^2] = \frac{2}{6} \left[\frac{25}{4} + \frac{9}{4} + \frac{1}{4} \right] = \frac{35}{12} \approx 2.91677 \dots$$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs have same expectation

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Variance – Properties

Definition. The **variance** of a (discrete) RV *X* is

$$\operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right] = \sum_{x} \mathbb{P}_X(x) \cdot \left(x - \mathbb{E}(X)\right)^2$$

Theorem. For any $a, b \in \mathbb{R}$, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

(Proof: Exercise!)

Theorem. $Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Variance

Proof: $Var(X) = \mathbb{E} \left[\left(X - \mathbb{E}(X) \right)^2 \right]$ - Recall $\mathbb{E}(X)$ is a **constant** $= \mathbb{E}[X^2 - 2\mathbb{E}(X) \cdot X + \mathbb{E}(X)^2]$ $= \mathbb{E}(X^{2}) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^{2}$ (linearity of expectation!) $= \mathbb{E}(X^2) - \mathbb{E}(X)^2$ $\mathbb{E}(X^2)$ and $\mathbb{E}(X)^2$ are different !

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}(X) = \frac{21}{6}$
- $\mathbb{E}(X^2) = \frac{91}{6}$

$$\operatorname{Var}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \frac{91}{6} - \left(\frac{21}{6}\right)^2 = \frac{105}{36} \approx 2.91677$$

In General, $Var(X + Y) \neq Var(X) + Var(Y)$

Proof by counter-example:

- Let X be a r.v. with pmf $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = 1/2$ - What is $\mathbb{E}[X]$ and Var(X)?
- Let Y = -X
 - What is **E**[**Y**] and **Var**(**Y**)?

What is Var(X + Y)?

Agenda

- Variance
- Properties of Variance
- Independent Random Variables <
- Properties of Independent Random Variables

Random Variables and Independence

Definition. Two random variables *X*, *Y* are **(mutually) independent** if for all *x*, *y*,

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y)$$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables $X_1, ..., X_n$ are **(mutually) independent** if for all $x_1, ..., x_n$, $\mathbb{P}(X_1 = x_1, ..., X_n = x_n) = \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n)$

Note: No need to check for all subsets, but need to check for all outcomes!

Example

Let *X* be the number of heads in *n* independent coin flips of the same coin. Let $Y = X \mod 2$ be the parity (even/odd) of *X*. Are *X* and *Y* independent?

> Poll: pollev.com/hunter312

A. YesB. No

Example

Make 2n independent coin flips of the same coin. Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.

Are *X* and *Y* independent?

Poll: pollev.com/hunter312

A. Yes B. No

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Important Facts about Independent Random Variables

Theorem. If *X*, *Y* independent, $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Corollary. If $X_1, X_2, ..., X_n$ mutually independent, $\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_i^n \operatorname{Var}(X_i)$

(Not Covered) Proof of $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Theorem. If *X*, *Y* independent, $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Proof

Let
$$x_i, y_i, i = 1, 2, ...$$
 be the possible values of X, Y .
 $E[X \cdot Y] = \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i \land Y = y_j)$ independence
 $= \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i) \cdot P(Y = y_j)$
 $= \sum_i x_i \cdot P(X = x_i) \cdot \left(\sum_j y_j \cdot P(Y = y_j)\right)$
 $= E[X] \cdot E[Y]$

Note: NOT true in general; see earlier example $E[X^2] \neq E[X]^2$

(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Proof

Var[X+Y]

 $= E[(X+Y)^2] - (E[X+Y])^2$

 $= E[X^{2} + 2XY + Y^{2}] - (E[X] + E[Y])^{2}$

 $= E[X^{2}] + 2E[XY] + E[Y^{2}] - ((E[X])^{2} + 2E[X]E[Y] + (E[Y])^{2})$

 $= E[X^{2}] - (E[X])^{2} + E[Y^{2}] - (E[Y])^{2} + 2(E[XY] - E[X]E[Y])$

= Var[X] + Var[Y] + 2(E[X]E[Y] - E[X]E[Y])

= Var[X] + Var[Y]

Example – Coin Tosses

We flip *n* independent coins, each one heads with probability *p*

- $X_i = \begin{cases} 1, \ i-\text{th outcome is heads} \\ 0, \ i-\text{th outcome is tails.} \end{cases}$
- Z = number of heads

Fact. $Z = \sum_{i=1}^{n} X_i$

$$\mathbb{P}(X_i = 1) = p$$
$$\mathbb{P}(X_i = 0) = 1 - p$$

What is E[Z]? What is Var(Z)?

$$\mathbb{P}(Z=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Note: $X_1, ..., X_n$ are <u>mutually</u> independent! [Verify it formally!] $Var(Z) = \sum_{i=1}^{n} Var(X_i) = n \cdot p(1-p)$ Note $Var(X_i) = p(1-p)$