CSE 312

Foundations of Computing II

Lecture 3: Even more counting

Binomial Theorem, Inclusion-Exclusion, Pigeonhole Principle

Rachel Lin, Hunter Schafer

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun's and Anna Karlin's slides for 312 20su and 20au

Announcement

First Homework tonight

- Posted by tonight on course website
- Written and coding portion
 - Recommend typing up written solutions in LaTeX (see practice on Ed)
 - Coding solutions can be done on Ed
- Deadline 11:59pm Next Friday
- Submission to Gradescope. Post on EdStem if you are not enrolled in Gradescope
- Tip: Section solutions are good examples of how to write solutions to these problems!

Resources

- Textbook readings can provide another perspective
- Theorems & Definitions sheet
- Office Hours

Agenda

- Recap & Finish Binomial Coefficients
- Binomial Theorem
- Inclusion-Exclusion
- Pigeonhole Principle

Recap of Last Time

Permutations. The number of orderings of n distinct objects

$$n! = n \times (n-1) \times \cdots \times 2 \times 1$$

Example: How many sequences in $\{1,2,3\}^3$ with no repeating elements?

k-Permutations. The number of orderings of **only** k out of n distinct objects

$$P(n,k)$$

$$= n \times (n-1) \times \dots \times (n-k+1)$$

$$= \frac{n!}{(n-k!)}$$

Example: How many sequences of 5 distinct alphabet letters from $\{A, B, ..., Z\}$?

Combinations / Binomial Coefficient. The number of ways to select k out of n objects, where ordering of the selected k does not matter:

$$C(n,k) = {n \choose k} = \frac{P(n,k)}{k!} = \frac{n!}{k!(n-k)!}$$

Example: How many size-5 **subsets** of $\{A, B, ..., Z\}$?

Example: How many shortest paths from Gates to Starbucks?

Example: How many solutions $(x_1, ..., x_k)$ such that $x_1, ..., x_k \ge 0$ and $\sum_{i=1}^k x_i = n$?

Recap* Example – Counting Paths

Path $\in \{\uparrow, \rightarrow\}^7$

A slightly modified example

Example path:

$$(\uparrow, \rightarrow, \uparrow, \rightarrow, \rightarrow, \uparrow, \rightarrow)$$

Recap Binomial Coefficient – Many interesting and useful properties

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} \qquad \binom{n}{n} = 1 \qquad \binom{n}{1} = n \qquad \binom{n}{0} = 1$$

Fact.
$$\binom{n}{k} = \binom{n}{n-k}$$
 Symmetry in Binomial Coefficients

Fact.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
 Pascal's Identity (This lecture)

Fact.
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

Follows from Binomial theorem (This lecture)

Recap Combinatorial vs Algebraic arguments/proofs

Combinatorial argument/proof

- Elegant
- Simple
- Intuitive

Algebraic argument/proof

- Brute force
- Less Intuitive

Argument/Proof.

$$\binom{4}{1} = 4 = \binom{4}{3}$$

Proof.

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} = \frac{n!}{(n-k)! \, k!} = \binom{n}{n-k}$$

Binomial Coefficient – Many interesting and useful properties

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} \qquad \binom{n}{n} = 1 \qquad \binom{n}{1} = n \qquad \binom{n}{0} = 1$$

Fact.
$$\binom{n}{k} = \binom{n}{n-k}$$
 Symmetry in Binomial Coefficients

Fact.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
 Pascal's Identity (Right now)

Fact.
$$\sum_{k=0}^{n} {n \choose k} = 2^n$$

Follows from Binomial theorem (This lecture)

Pascal's Identities

Fact.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
 How to prove Pascal's identity?

Algebraic argument:

$${\binom{n-1}{k-1}} + {\binom{n-1}{k}} = \frac{(n-1)!}{(k-1)! (n-k)!} + \frac{(n-1)!}{k! (n-1-k)!}$$

$$= 20 \ years \ later \dots$$

$$= \frac{n!}{k! (n-k)!}$$

$$= {\binom{n}{k}} \quad \text{Hard work and not intuitive}$$

Let's see a combinatorial argument

Disjoint Sets

Sets that do not contain common elements $(A \cap B = \emptyset)$

Fact.
$$|A \cup B| = |A| + |B|$$

Example – Binomial Identity

Fact.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
 $|S| = |A| + |B|$
 $S = A \cup B$

S: the set of size
$$k$$
 subsets of $[n] = \{1, 2, \dots, n\}$ \rightarrow $|S| = \binom{n}{k}$

e.g.:
$$n = 4$$
, $S = \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}$

A: the set of size k subsets of [n] including n $A = \{\{1,4\}, \{2,4\}, \{3,4\}\}\}$

B: the set of size
$$k$$
 subsets of $[n]$ NOT including n $B = \{\{1,2\}, \{1,3\}, \{2,3\}\}$

Example – Binomial Identity

Fact.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

$$|S| \qquad |A| \qquad |B|$$

S: the set of size k subsets of $[n] = \{1, 2, \dots, n\}$

A: the set of size k subsets of [n] including n

B: the set of size k subsets of [n] NOT including n

n is in set, need to choose k-1 elements from [n-1]

$$|A| = \binom{n-1}{k-1}$$

n not in set, need to choose k elements from [n-1]

$$|B| = \binom{n-1}{k}$$

Agenda

- Recap & Finish Binomial Coefficients
- Binomial Theorem
- Inclusion-Exclusion
- Pigeonhole Principle

Binomial Theorem: Idea

$$(x + y)^{2} = (x + y)(x + y)$$

$$= xx + xy + yx + yy$$

$$= x^{2} + 2xy + x^{2}$$

Poll: What is the coefficient for xy^3 ?

- A. 4
- B. $\binom{4}{1}$
- C. $\binom{4}{3}$
- *D.* 3

https://pollev.com/hunter312

$$(x + y)^{4} = (x + y)(x + y)(x + y)(x + y)$$

$$= xxxx + yyyy + xyxy + yxyy + ...$$

Binomial Theorem: Idea

•
$$(x + y)^n = (x + y) \dots (x + y)$$

Each term is of the form $x^k y^{n-k}$, since each term is is made by multiplying exactly n variables, either x or y.

How many times do we get $x^k y^{n-k}$? The number of ways to choose k of the n variables we multiple to be an x (the rest will be y).

$$\binom{n}{k} = \binom{n}{n-k}$$

Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Corollary.

$$\sum_{k=0}^{n} {n \choose k} = 2^n$$

Brain Break

Agenda

- Recap & Finish Binomial Coefficients
- Binomial Theorem
- Inclusion-Exclusion
- Pigeonhole Principle

Recap Disjoint Sets

Sets that do not contain common elements $(A \cap B = \emptyset)$

Fact.
$$|A \cup B| = |A| + |B|$$

Inclusion-Exclusion

But what if the sets are not disjoint?

$$|A| = 43$$

 $|B| = 20$
 $|A \cap B| = 7$
 $|A \cup B| = ???$

Inclusion-Exclusion

What if there are three sets?

$$|A \cup B \cup C| = |A| + |B| + |C|$$

- $|A \cap B| - |A \cap C| - |A \cap C|$
+ $|A \cap B \cap C|$

$$|A| = 43$$

 $|B| = 20$
 $|C| = 35$
 $|A \cap B| = 7$
 $|A \cap C| = 16$
 $|B \cap C| = 11$
 $|A \cap B \cap C| = 4$
 $|A \cup B \cup C| = ???$

Inclusion-Exclusion

Let A, B be sets. Then $|A \cup B| = |A| + |B| - |A \cap B|$

In general, if $A_1, A_2, ..., A_n$ are sets, then

$$|A_1 \cup A_2 \cup \dots \cup A_n| = singles - doubles + triples - quads + \dots$$

= $(|A_1| + \dots + |A_n|) - (|A_1 \cap A_2| + \dots + |A_{n-1} \cap A_n|) + \dots$

Agenda

- Recap & Finish Binomial Coefficients
- Binomial Theorem
- Inclusion-Exclusion
- Pigeonhole Principle •

Pigeonhole Principle (PHP): Idea

10 pigeons, 9 pigeonholes

Pigeonhole Principle: Idea

If 11 children have to share 3 cakes, at least one cake must be shared by how many children?

Pigeonhole Principle - More generally

If there are n pigeons in k < n holes, then one hole must contain at least $\frac{n}{k}$ pigeons!

Proof. Assume there are $<\frac{n}{k}$ pigeons per hole.

Then, there are $< k \frac{n}{k} = n$ pigeons overall.

Contradiction!

Pigeonhole Principle - Better version

If there are n pigeons in k < n holes, then one hole must contain at least $\left\lceil \frac{n}{k} \right\rceil$ pigeons!

Reason. Can't have fractional number of pigeons

Syntax reminder:

- Ceiling: [x] is x rounded up to the nearest integer (e.g., [2.731] = 3)
- Floor: [x] is x rounded down to the nearest integer (e.g., [2.731] = 2)

Pigeonhole Principle: Strategy

To use the PHP to solve a problem, there are generally 4 steps

- 1. Identify pigeons
- 2. Identify pigeonholes
- 3. Specify how pigeons are assigned to pigeonholes
- 4. Apply PHP

Pigeonhole Principle – Example

In a room with 367 people, there are at least two with the same birthday.

Solution:

- 1. **367** pigeons = people
- 2. **365** holes = possible birthdays
- 3. Person goes into hole corresponding to own birthday
- 4. By PHP, there must be two people with the same birthday

Pigeonhole Principle – Example (Surprising?)

In every set S of 100 integers, there are at least **two** elements whose difference is a multiple of 37.

When solving a PHP problem:

- 1. Identify pigeons
- 2. Identify pigeonholes
- Specify how pigeons are assigned to pigeonholes
- 4. Apply PHP

Agenda

- Recap & Finish Binomial Coefficients
- Binomial Theorem
- Inclusion-Exclusion
- Pigeonhole Principle