CSE 312 Foundations of Computing II

Lecture 8: Chain Rule and Independence

Rachel Lin, Hunter Schafer

1

Slide Credit: Based on Stefano Tessaro's slides for 312 19au

incorporating ideas from Alex Tsun's and Anna Karlin's slides for 312 20su and 20au

Announcement

- Pset 3 is out today
- Pset 2 is due tomorrow

Last Class:

- Conditional Probability
- Bayes Theorem
- Law of Total probability

$$\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})}$$
$$\longrightarrow \mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

 $\mathbb{P}(F) = \sum_{i=1}^{n} \mathbb{P}(F|E_i) \mathbb{P}(E_i) \quad E_i \text{ partition } \Omega$

Today:

- Chain Rule
- Independence
- Sequential Process

An easy way to remember: We have n tasks and we can do them sequentially, conditioning on the outcome of previous tasks

Chain Rule Example

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards. (uniform probability space).

Independence

Definition. Two events \mathcal{A} and \mathcal{B} are (statistically) **independent** if $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}).$ \leftarrow **Equivalence:** • If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(\mathcal{B})$ • If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A}|\mathcal{B}) = \mathbb{P}(\mathcal{A})$ "The probability that \mathcal{B} occurs after observing \mathcal{A} " – Posterior = "The probability that \mathcal{B} occurs" – Prior

Example -- Independence

Toss a coin 3 times. Each of 8 outcomes equally likely.

A = {at most one T} = {HHH, HHT, HTH, THH}
B = {at most 2 Heads} = {HHH}^c
Any

$$\begin{array}{c}
\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \stackrel{2}{\neq} \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}) \\
\stackrel{3}{\xrightarrow{8}} \stackrel{1}{\xrightarrow{7}} \stackrel{4}{\xrightarrow{8}} \stackrel{2}{\xrightarrow{8}} \stackrel{1}{\xrightarrow{8}} \stackrel{4}{\xrightarrow{8}} \stackrel{2}{\xrightarrow{8}} \stackrel{1}{\xrightarrow{8}} \stackrel{1}{\xrightarrow{8}} \stackrel{1}{\xrightarrow{7}} \stackrel{1}{\xrightarrow{8}} \stackrel{1}{\xrightarrow{8}} \stackrel{1}{\xrightarrow{7}} \stackrel{1}{\xrightarrow{8}} \stackrel{1}{\xrightarrow$$

Example – Network Communication

Each link works with the probability given, **independently**. What's the probability A and D can communicate?

Example – Throwing Dies

Alice and Bob are playing the following game.

A 6-sided die is thrown, and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers

If it shows 1, $2 \rightarrow \underline{Alice wins.}$ If it shows 3 \rightarrow Bob wins. Otherwise, play another round 4,5-6What is $Pr(Alice wins on 1^{st} round) =$ $Pr(\underline{Alice wins on 2^{st} round) =$ \dots $Pr(\underline{Alice wins on i^{th} round) = ?$ $Pr(\underline{Alice wins on any round) = ?$

Often probability space (Ω, \mathbb{P}) is given **implicitly** of the following form, using chain rule and/or independence

Experiment proceeds in n sequential steps, each step follows some local rules defined by conditional probability and independence.

– Allows for easy definition of experiments where $|\Omega| = \infty$

Sequential Process – Independent case, don't care entire prob. space

A 6-sided die is thrown, and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers

Local Rules: In each round

- If it shows $1, 2 \rightarrow Alice$ wins
- If it shows $3 \rightarrow Bob$ wins
- Else, play another round

Pr (Alice win | game proceeds to round i) = 1/3

Sequential Process – Example

Events:

- \mathcal{A}_i = Alice wins in round *i*
- \mathcal{N}_i = nobody wins in round *i*

 \mathcal{A}_1

1,2

1/3

 \mathcal{A}_2

Independence – Another Look

It is important to understand that independence is a property of probabilities of outcomes, not of the root cause generating these events.

Events generated independently *→* their probabilities satisfy independence

Not necessarily

This can be counterintuitive!

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are **independent** conditioned on \mathcal{C} if $\mathbb{P}(\mathcal{C}) \neq 0$ and $\mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid \mathcal{C}) = \mathbb{P}(\mathcal{A} \mid \mathcal{C}) \cdot \mathbb{P}(\mathcal{B} \mid \mathcal{C}).$

Equivalence:

- If $\mathbb{P}(\mathcal{A} \cap C) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B}|\mathcal{A} \cap C) = \mathbb{P}(\mathcal{B}|C)$
- If $\mathbb{P}(\mathcal{B} \cap \mathcal{C}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} | \mathcal{B} \cap \mathcal{C}) = \mathbb{P}(\mathcal{A} | \mathcal{C})$

Plain Independence. Two events \mathcal{A} and \mathcal{B} are **independent** if

 $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}).$

Equivalence:

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A}|\mathcal{B}) = \mathbb{P}(\mathcal{A})$

Example – Throwing Dies

Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with Pr(Head) = 0.9. We pick one randomly with equal probability and flip that coin 2 times independently. What is the probability we get all heads?

Next Lecture

Next: Random Variables – First encounter

Often: We want to **capture quantitative properties** of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 20 coin tosses?

Definition. A random variable (RV) for a probability space (Ω, \mathbb{P}) is a function $X: \Omega \to \mathbb{R}$.*

• The set of values that X can take on is called its range/support

Example. Throwing two dice
$$\Omega = \{(i,j) \mid i,j \in [6]\}$$
 $\mathbb{P}((i,j)) = \frac{1}{36}$.
 $X(i,j) = i + j$
 $Y(i,j) = i \cdot j$
 $Z(i,j) = i$

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event $\{X = x\} = \{\omega \in \Omega \mid X(\omega) = x\}$ We write $\mathbb{P}(X = x) = \mathbb{P}(\{X = x\}) = \mathbb{P}\{\omega \in \Omega \mid X(\omega) = x\}$ Random variables $X(\omega) = x_4$ $X(\omega) = x_1$ partition the $X(\omega) = x_3$ sample space. \mathbf{O} $X(\omega) = x_2$ $\Sigma_{x}\mathbb{P}(X=x)=1$

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event $\{X = x\} = \{\omega \in \Omega \mid X(\omega) = x\}$ We write $\mathbb{P}(X = x) = \mathbb{P}(\{X = x\}).$

Example.
$$X(i,j) = i + j$$

 $\mathbb{P}(X = 4) = \mathbb{P}(\{(1,3), (3,1), (2,2)\}) = 3 \times \frac{1}{36} = \frac{1}{12}$
 $\mathbb{P}(X = 3) = \mathbb{P}(\{(1,2), (2,1)\}) = 2 \times \frac{1}{36} = \frac{2}{36} = \frac{1}{18}$
 $\mathbb{P}(X = 2) = \mathbb{P}(\{(1,1)\}) = 1 \times \frac{1}{36} = \frac{1}{36}$

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event $\{X = x\} = \{\omega \in \Omega \mid X(\omega) = x\}$ We write $\mathbb{P}(X = x) = \mathbb{P}(\{X = x\}).$

Example. Z(i, j) = i

 $\mathbb{P}(Z=2) = \mathbb{P}(\{(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)\}) = \frac{1}{6}$