Setting

Medical data
Query logs
Social network data
...

Data mining
Statistical queries
Main concern: Do not violate user privacy!

Publish:
Aggregated data, e.g., outcome of medical study, research paper, …
Example – Linkage Attack

- The Commonwealth of Massachusetts Group Insurance Commission (GIC) releases 135,000 records of patient encounters, each with 100 attributes
 - Relevant attributes removed, but ZIP, birth date, gender available
 - Considered “safe” practice
- Public voter registration record
 - Contain, among others, name, address, ZIP, birth date, gender
- Allowed identification of medical records of William Weld, governor of MA at that time
 - He was the only man in his zip code with his birth date ...

+More attacks! (cf. Netflix grand prize challenge!)
One way out? Differential Privacy

• A **formal definition** of privacy
 – Satisfied in systems deployed by Google, Uber, Apple, ...

• Used by 2020 census

• Idea: **Any information-related risk to a person should not change significantly as a result of that person’s information being included, or not, in the analysis.**
 – Even with side information!
Ideal Individual’s Privacy

For every individual A whose record in DB

\[\overrightarrow{x} \]

DB w/ A’s data

\[\overrightarrow{x'} \]

DB w/o A’s data

Analysis

Output

Very good for privacy. But the output would be **useless** as it does not depend on any individual’s record!

Ideally: Should be identical!

Common Theme:
- Tension / Balance between privacy & utility
- Privacy is not a 0 / 1 property.
More Realistic Privacy Goal

DB w/ A’s data → Analysis → Output

DB w/o A’s data → Analysis → Output’

Should be “similar”
Setting – Formal

We say that \vec{x}, \vec{x}' differ at exactly one entry.

$M = \text{mechanism}$

Here, M is randomized, i.e., it makes random choices.
Definition. A mechanism \(M \) is \(\epsilon \)-differentially private if for all subsets \(* T \subseteq \mathbb{R} *, and for all databases \(\vec{x}, \vec{x}' \) which differ at exactly one entry,

\[
\Pr(M(\vec{x}) \in T) \leq e^{\epsilon} \Pr(M(\vec{x}') \in T)
\]

Think: \(\epsilon = \frac{1}{100} \) or \(\epsilon = \frac{1}{10} \)

* Can be generalized beyond output in \(\mathbb{R} \)
Example – Counting Queries

• DB is a vector \(\overrightarrow{x} = (x_1, \ldots, x_n) \) where \(x_1, \ldots, x_n \in \{0,1\} \)

 – \(x_i = 1 \) if individual \(i \) has diseases

 – \(x_i = 0 \) means patient does not have disease or patient data wasn’t recorded.

• Query: \(q(\overrightarrow{x}) = \sum_{i=1}^{n} x_i \)

Here: \(\overrightarrow{x} \) and \(\overrightarrow{x'} \) differ at one entry means they differ at one single coordinate, e.g., \(x_i = 1 \) and \(x'_i = 0 \)
A solution – Laplacian Noise

Mechanism M taking input $\vec{x} = (x_1, \ldots, x_n)$:
- Return $M(\vec{x}) = \sum_{i=1}^{n} x_i + Y$

Here, Y follows a Laplace distribution with parameter ϵ.

“Laplacian mechanism with parameter ϵ“

\[
f_Y(y) = \frac{\epsilon}{2} e^{-\epsilon |y|}
\]
\[
\mathbb{E}(Y) = 0
\]
\[
\text{Var}(Y) = \frac{2}{\epsilon^2}
\]
Mechanism M taking input $\mathbf{x} = (x_1, \ldots, x_n)$:

- Return $M(\mathbf{x}) = \sum_{i=1}^{n} x_i + Y$

Here, Y follows a Laplace distribution with parameter ϵ

$$f_Y(y) = \frac{\epsilon}{2} e^{-\epsilon|y|}$$

Key property: For all y, Δ

$$\frac{f_Y(y)}{f_Y(y + \Delta)} \leq e^{\epsilon \Delta}$$
Laplacian Mechanism – Privacy

Theorem. The Laplacian Mechanism with parameter ϵ satisfies ϵ-differential privacy

Show: $\forall \vec{x}, \vec{x}'$ differ at one entry, $[a, b]$

$$
\Delta = \sum_{i=1}^{n} x'_i - \sum_{i=1}^{n} x_i \quad |\Delta| \leq 1
$$

$$
P(M(\vec{x}) \in [a, b]) = P(s + Y \in [a, b]) = \int_{a-s}^{b-s} f_Y(y) dy = \int_{a}^{b} f_Y(y - s') dy' \quad \text{(1)}
$$

$$
\leq e^{\epsilon \Delta} \int_{a}^{b} f_Y(y - s') dy \leq e^{\epsilon} \int_{a}^{b} f_Y(y - s') dy
$$

$$
e^{\epsilon} P(M(\vec{x}') \in [a, b])
$$
How Accurate is Laplacian Mechanism?

Let’s look at $\sum_{i=1}^{n} x_i + Y$

- $\mathbb{E}(\sum_{i=1}^{n} x_i + Y) = \sum_{i=1}^{n} x_i + \mathbb{E}(Y) = \sum_{i=1}^{n} x_i$
- $\text{Var}(\sum_{i=1}^{n} x_i + Y) = \text{Var}(Y) = \frac{2}{\varepsilon^2}$

This is accurate enough for large enough n!
Differential Privacy – What else can we compute?

- **Statistics:** counts, mean, median, histograms, boxplots, etc.
- **Machine learning:** classification, regression, clustering, distribution learning, etc.
- ...
Differential Privacy – Nice Properties

- **Group privacy:** If M is ϵ-differentially private, then for all $T \subseteq \mathbb{R}$, and for all databases \vec{x}, \vec{x}' which differ at (at most) k entries,
 \[\Pr(M(\vec{x}) \in T) \leq e^{k\epsilon} \Pr(M(\vec{x}') \in T) \]

- **Composition:** If we apply two ϵ-DP mechanisms to data, combined output is 2ϵ-DP.
 - How much can we allow ϵ to grow? (So-called “privacy budget.”)

- **Post-processing:** Postprocessing does not decrease privacy.
Local Differential Privacy

Laplacian Mechanism

What if we don’t trust aggregator?

Solution: Add noise locally!
Example – Randomize Response

Mechanism M taking input $\mathbf{x} = (x_1, \ldots, x_n)$:

• For all $i = 1, \ldots, n$:

 $- y_i = x_i$ w/ probability $\frac{1}{2} + \alpha$, and $y_i = 1 - x_i$ w/ probability $\frac{1}{2} - \alpha$.

 $- \hat{x}_i = \frac{y_i - \frac{1}{2} + \alpha}{2\alpha}$

• Return $M(\mathbf{x}) = \sum_{i=1}^{n} \hat{x}_i$

Example – Randomize Response

Mechanism M taking input $\vec{x} = (x_1, ..., x_n)$:
• For all $i = 1, ..., n$:
 - $y_i = x_i$ w/ probability $\frac{1}{2} + \alpha$, and $y_i = 1 - x_i$ w/ probability $\frac{1}{2} - \alpha$.
 - $\hat{x}_i = \frac{y_i - \frac{1}{2} + \alpha}{2\alpha}$
• Return $M(\vec{x}) = \sum_{i=1}^{n} \hat{x}_i$

Theorem. Randomized Response with parameter α satisfies ε-differential privacy, if $\alpha = \frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1}$.

Fact 1. $\mathbb{E}(M(\vec{x})) = \sum_{i=1}^{n} x_i$

Fact 2. $\text{Var}(M(\vec{x})) \approx \frac{n}{\varepsilon^2}$
Differential Privacy – Challenges

• **Accuracy vs. privacy:** How do we choose \(\epsilon \)?
 – Practical applications tend to err in favor of accuracy.
 – See e.g. https://arxiv.org/abs/1709.02753

• **Fairness:** Differential privacy hides contribution of small groups, by design
 – How do we avoid excluding minorities?
 – Very hard problem!
Literature

• Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of Differential Privacy”.
 – https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
• https://privacytools.seas.harvard.edu/