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Agenda

• Recap: Markov Chains

– Intuition

– Computing Probabilities

– Matrix Notation

• Stationary Distributions

• PageRank
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So far, a single-shot random process
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Definition: A discrete-time stochastic process (DTSP) is a sequence of 

random variables 𝑋(0), 𝑋(1),𝑋(2), . . . where 𝑋(𝑡) is the value at time 𝑡.

Last time / Today : 
See a very special type of DTSP 
called Markov Chains 



Formalizing Markov Chain
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𝑝𝐸𝐸 = P(𝑋 𝑡+1 = 𝐸 | 𝑋(𝑡) = 𝐸 ) = 0.5

𝑿(𝒕) my state at t 𝑿(𝒕+𝟏) my state at t+1

𝑝𝑊𝐸 = P(𝑋 𝑡+1 = 𝐸 | 𝑋(𝑡) = 𝑊 ) = 0

3. What is the prob that I work at t+1 = 100? 

By LTP: 𝑝𝑊
(𝑡+1)

= 𝑃(𝑋 𝑡+1 = 𝑊) = Σ𝑈∈{𝑊,𝑆,𝐸} P 𝑋 𝑡+1 = 𝑊 X(𝑡) = 𝑈) P(X(𝑡) = U)



Transition Matrix
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LTP: 𝑝𝑊
(𝑡+1)

= 𝑃 𝑋 𝑡+1 = 𝑊

= Σ𝑈∈{𝑊,𝑆,𝐸} P 𝑋 𝑡+1 = 𝑊 X(𝑡) = 𝑈) P(X(𝑡) = U)

➔ 𝑋(𝑡+1) = 𝑋(𝑡) 𝑃

➔ 𝑋(𝑡) = 𝑋(0) 𝑃𝑡

𝑿(𝒕) 𝑿(𝒕+𝟏)

𝑃 =
.4 .6 0
.1 .6 .3
.5 0 .5

𝑋(𝑡) = (𝑝𝑤
𝑡

𝑝𝑆
𝑡

𝑝𝐸
𝑡 )

3. What is the prob that I work at t = 100? 

Closed formula: 𝑝𝑊
(𝑡)

= 𝑋(𝑡) 1 = (𝑋(0) 𝑃𝑡) [1]
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• Recap: Markov Chains

– Intuition

– Computing Probabilities

– Matrix Notation

• Stationary Distributions

• PageRank
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Example: Random Walks

Suppose we start at node 1, and at each step
transition to a neighboring node with equal
probability.

How does the probability of me being at
each node look as we let this process goes on?
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Example: Random Walks
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𝑃𝑖𝑗 = 𝑃 𝑖, 𝑗 = Pr 𝑋 𝑡+1 = 𝑗 | 𝑋 𝑡 = 𝑖

𝑝𝑖
(𝑡)

= Pr X 𝑡 = 𝑖 = 𝑣(𝑡) 𝑖 = 𝑣(0)𝑃𝑡 [𝑖]



Example: Random Walks
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Example: Random Walks
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Example: Random Walks
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Compute Pr 𝑋 2 = 3 | 𝑋 0 = 2
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Stationary Distribution of a Markov Chain
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Definition. The stationary distribution of a Markov Chain with 𝑛
states (which doesn’t always exist), is the 𝑛-dimensional row vector 𝜋
(which must be a probability distribution – nonnegative and sums to 
1) such that

𝜋𝑃 = 𝜋

Intuition: Distribution over states at next step is the same as the distribution over 
states at the current step



Stationary Distribution of a Markov Chain
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Intuition: 𝑣(𝑡) is the distribution of being at each state at time 𝑡

computed by 𝑣(𝑡) = 𝑣(0)𝑃𝑡. As 𝑡 is large 𝑣 𝑡 ≈ 𝑣 𝑡+1 .

Theorem. The Fundamental Theorem of Markov Chains says that 
(under some minor technical conditions), for a Markov Chain with 
transition probabilities 𝑃 and for any starting distribution over the 

states 𝑣(0)

lim
𝑡→∞

𝑣(0)𝑃𝑡 = 𝜋

where 𝜋 is the stationary distribution of 𝑃 (i.e., 𝜋𝑃 = 𝜋 )



Brain Break

14



Agenda

• Recap: Markov Chains

– Intuition

– Computing Probabilities
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PageRank: Some History

The year was 1997

– Bill Clinton in the White House

– Deep Blue beat world chess champion (Kasparov)

The internet was not like it was today. Finding stuff was hard!

– In Nov 1997, only one of the top 4 search engines actually found 
itself when you searched for it
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The Problem

Search engines worked by matching words in your queries to 
documents. 

Not bad in theory, but in practice there are lots of documents 
that match a query.

– Search for Bill Clinton, top result is ‘Bill Clinton Joke of the Day’

– Susceptible to spammers and advertisers
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The Fix: Ranking Results

Start by doing filtering to relevant documents (that part is 
easier). Then rank the results based on some measure of 
‘quality’ or ‘authority’.

Key question: Who defines ‘quality’ or ‘authority’?

Enter two groups:
– Jon Kleinberg (professor at Cornell, MacArthur Genius Prize)

– Larry Page and Sergey Brin (Ph.D. students at Stanford, founded 
Google)
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PageRank - Idea

Use hyperlink analysis to compute what pages are high quality 
or have high authority. Trust the internet itself define what is 
useful.
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PageRank

Idea: Use this transition matrix 𝑃 to compute quality of webpages. 
Namely, find 𝑞 such that

𝑞𝑃 = 𝑞

Seems like trying to find the stationary distribution of a Markov 
chain? Where is the Markov chain here? A random surfer!

– Starts at some node (webpage) and randomly follows a link to another.

– Use stationary distribution of her surfing patterns after a long time as 
notion of quality
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Issues with PageRank

• How to handle dangling nodes (dead ends)? 

• How to handle Rank sinks – group of pages that only link to 
each other?

Both solutions can be solved by “teleportation”
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Final PageRank Algorithm

• Make a Markov Chain with one state for each webpage on the internet 

with the transition probabilities 𝑃𝑖𝑗 =
1

𝑜𝑢𝑡𝑑𝑒𝑔(𝑖)
.

• Use a modified random walk. At each point in time, the surfer is at some 
webpage 𝑥.
– With probability 𝑝, take a step to one of the neighbors of 𝑥 (equally likely)

– With probability 1 − 𝑝, “teleport” to a uniformly random page in the whole 
internet.

• Compute stationary distribution 𝜋 of this perturbed Markov chain. 

• Define the PageRank of a webpage 𝑥 as the stationary probability 𝜋𝑥. 

• Order pages by PageRank
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PageRank - Example
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It Gets More Complicated

While this basic algorithm was the defining thing that launched 
Google on their path to success, this is not the end to 
optimizing search.

Nowadays, Google has a LOT more secret sauce to ranking 
pages most of which they don’t reveal for 1) competitive 
advantage and 2) avoid gaming their algorithm.
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