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Probability: View Point up to Now

X~ Ber(G)
piX=1. ©)=06

Distribution
P(x; 0)

6 = known parameter

Independent

> samples x4, ..., x,,

from P(x;0)

0 tells us how samples are distributed.
P(x ; 8) viewed as a function of x (fixed 0)



Statistics: Parameter Estimation — Workflow

Parameter
X~ B"(?) estimate
onlenom ! /
Distribution ‘ Independent ‘ . A
P(x; ) > samples x4, ..., x,, » Algorithm ——— (@
’ from P(x; 0)

Don’t know how samples are distributed.

6 = unknown parameter
L(x|0) viewed as a function of 6 (fixed x)

Example: L(x|6) = coin flip distribution with unknown 6 = probability of heads

Observation: HTTHHHTHTHTTTTHTHTTTTTHT

Goal: Estimate 6  Srom  dadm



Example

Suppose we have a mystery coin with some probability p of coming up heads. We
flip the coin 8 times, independent of other flips and see the following sequence flips

TTHTHTTH

Given this data, what would you estimate p is?

Poll: pollev.com/hunter312
a 1/2
'b. 5/8

d c. 3/8

___________________________________________________________________________________________
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[ [ ] é =0' 3
Likelihood Xi~ Ber (6) Max Prob of seeing HHTHH

RIXH:6):6 o l
Say we see outcome HHTHH.
L(HHTHH | 0) = 0%(1 — 6) .
Probability of observing the
outcome HHTHH if & = prob. of

heads. This is a function of 6.

0.03

0.02

0.01

A q — 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3 (i1 8) = 35 671 ©) - ﬁ
5° A" < Tedmiafty need
-5 9 < O b4
) fé o'~ ¢ ‘:}ze(q 58)=0 VZ“ devivahve Feo k.
e -
- 5 o Y But+ we skip Ha3
e 6= 0 & Shp in 2 s
guhs 7




Likelihood of Different Observations (Discrete case)

Definition. The likelihood of independent observations x4, ...., x,, is

n
L(X1, .., Xx,|0) = 1_[ P(x;; 0)
i=1

~ Maximum Likelihood Estimation (MLE). Given data xy, ..., X, find
0 (“the MLE”) of model such that L(xy, ..., x,,|0) is maximized!
| 6 = argmax L(xq, ..., x,|6)




Likelihood vs. Probability
yoisble [fives
) d
A probability function Pr(x ; 6) is a function with input being an

event x for some fixed probability model (w/ param 6).

&-.,eévar' Z Pr(x;0) =1
> D

X

A likelihood function L(x |6) is a function with input being 6 (the
param of the prob. Model) for some fixed dataset x.

These notions are very closely connected, but answer different
questions. We are trying to find the 6 that maximizes likelihood,
thus we are looking for the maximum likelihood estimator.



Example — Coin Flips Xi~ Bor (0)
'P,/)(z—-\ , )=0

o Pe(xi=0; )= 1-9 ,
Observe: Coin-flip outcomes x4, ..., x,,, with ny heads, n; tails

—le,ng+nr=n Goal: estimate 6 = prob. heads.

L(x1, e, xp|0) = 0™H(1 — Q)T &~ Lb,ona j65=TT Rl ; )

59 L(xq, .., x,|0) =777

While it is possible to compute this derivative, it’s not always
nice since we are working with products.
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o e “T ]/— monotonically
Log-Likelihood 0 0< sl creasing

We can save some work if we work with the log-likelihood instead of the
likelihood directly. é‘ arg e ) (v wal @) = a‘?g“" b L%, ., %10 )
= 9 /

__________________________________________________________________________________________________________________________________________________________________________

Definition. The log-likelihood of independent observations
X1, e, X IS
| LL(XY, weney X0 |0) = InL(Xq, ..., X, |0)

n n

= lnl_[ P(x;;0) = Z InP(x;; 0)
=i, =t

__________________________________________________________________________________________________________________________________________________________________________

Useful log properties
log(ab) = log(a) + log(b)
log(a/b) = log(a) —log(b)
log(a?) = blog(a) y



Example - Coin Flips

Observe: Coin-flip outcomes x4, ..., x,,, with ny heads, n tails

—le,ng+nr=n Goal: estimate 6 = prob. heads.

1
_ pngy n —C-L— la@= 3
L(xq,....,x,|0) =06 (1 — Q)" dd
H VY d . y
In L(xq, ..., Xp|0) =1y In6 +nriIn(l —6) @10(3(9)) = £7(403) 9 (9)
= 1 s ]
aan!.l(xl,.... X,|60) =111H-54— nT.l—HJ ........ . nH _______

1
SOIVe Ny - 5 nr:
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Brain Break
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The Continuous Case O (X=x; 8 )= O

kad (O o [0 v

Given n samples x4, ..., x,, from a Gaussian V' (u, 0%), estimate

Density function! (Why?)
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Why density?

* Density # probability, but:

— For maximizing likelihood, we really only care about relative
likelihoods, and density captures that

— has desired property that likelihood increases with better fit to the
model
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n samples x4, ..., x,, € R from Gaussian NV (i, 1). Most likely u?

[i.e., we are given the promise that the variance is one]
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n samples x4, ..., x,, € R from Gaussian NV (i, 1). Most likely u?

u=0°7?

Unlikely ...
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n samples x4, ..., x,, € R from Gaussian N (i, 1). Most likely u?

u=3?

Better, but
optimal?
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Example - Gaussian Parameters

"’M(@/ I)
Normal outcomes x4, ..., x,,, known variance ¢* = 1
Goal: estimate 6 expectation
$(x: 5 0)
: o (g 9)2 ( 1 )" S (x=6)?
Lx,...x@-l_[ = — He_ 2
1 n /—27_[ 1]
< e
ln 2m (xl — 9)2

InL(xq,....,x,]|0) = —

\

| = )
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Example — Gaussian Parameters Goal: estimate 0= expectation

Normal outcomes x4, ..., x,,, kKnown variance g’ =1 f(ie:O
Iwhn i - 6)2
In L(x1, ..., x,]|0) = —n > —. —

9 (x Y o
Note: —: ‘2 :——2 (x; —0)-(—1) =6 — x;

aHln!.l(xl, e X |0) = Z(xl —0) = Exl —nfd =0

i=1
. Y%x. | Inother words, MLE is the 2 N (gxi)=Tem s (T &)

H ==Lt

sample mean of the data.
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Next: n samples x4, ..., x,, € R from Gaussian V' (1, o%). Most likely 1 and

0}
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General Recipe

1. Input Given n iid samples x4, ..., x,, from parametric model with
parameters 6.

2. Likelihood Define your likelihood L(x4, ...., x,,|60).
— Fordiscrete  L(xy,....,x,]0) = [} Pr(x; ; 0)
— For continuous L(xy, ..., x,|0) = [1iv, f(x;;0)

3. Log Compute In L(x4, ....,x,|0)

4. Differentiate Compute % In L(xq, ....,x,|0)
5. Solve for O by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a
maximum, but we won’t ask you to do that in CSE 312.
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