
CSE 312

Foundations of Computing II

Lecture 24: Maximum Likelihood Estimation (MLE)

1
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Agenda

• Idea: Estimation

• Maximum Likelihood Estimation (example: mystery coin)

• Continuous random variables

• General Steps
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Distribution
ℙ(𝑥; 𝜃)

Independent 
samples 𝑥1, … , 𝑥𝑛
from ℙ(𝑥 ; 𝜃)

𝜃 = known parameter

Probability: View Point up to Now

𝜃 tells us how samples are distributed.
ℙ(𝑥 ; 𝜃) viewed as a function of x (fixed 𝜃)



Statistics: Parameter Estimation – Workflow
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Distribution
ℙ(𝑥; 𝜃)

Independent 
samples 𝑥1, … , 𝑥𝑛
from ℙ(𝑥; 𝜃)

Algorithm መ𝜃

Parameter 
estimate

𝜃 = unknown parameter

Example: ℒ(𝑥|𝜃) = coin flip distribution with unknown 𝜃 = probability of heads  

Observation:  HTTHHHTHTHTTTTHTHTTTTTHT

Goal: Estimate 𝜃

Don’t know how samples are distributed.

ℒ(𝑥|𝜃) viewed as a function of 𝜃 (fixed x)



Example

Suppose we have a mystery coin with some probability 𝑝 of coming up heads. We 
flip the coin 8 times, independent of other flips and see the following sequence flips

𝑇𝑇𝐻𝑇𝐻𝑇𝑇𝐻

Given this data, what would you estimate 𝑝 is?
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Poll:  pollev.com/hunter312
a. 1/2
b. 5/8
c. 3/8
d. 1/4



Agenda

• Idea: Estimation

• Maximum Likelihood Estimation (example: mystery coin)

• Continuous random variables

• General Steps
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Likelihood
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ℒ 𝐻𝐻𝑇𝐻𝐻 | 𝜃 = 𝜃4(1 − 𝜃)

Probability of observing the 
outcome HHTHH if 𝜃 = prob. of 
heads. This is a function of 𝜃. 

Say we see outcome HHTHH. 
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Likelihood of Different Observations
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Definition. The likelihood of independent observations 𝑥1, … . , 𝑥𝑛 is

ℒ 𝑥1, … . , 𝑥𝑛 𝜃 =ෑ

𝑖=1

𝑛

ℙ(𝑥𝑖; 𝜃)

(Discrete case)

Maximum Likelihood Estimation (MLE). Given data 𝑥1, … . , 𝑥𝑛, find 
መ𝜃 (“the MLE”) of model such that 𝐿 𝑥1, … . , 𝑥𝑛 መ𝜃 is maximized!

መ𝜃 = argmax
𝜃

ℒ 𝑥1, … . , 𝑥𝑛 𝜃

Usually: Solve 
𝜕𝐿 𝑥1, … . , 𝑥𝑛 𝜃

𝜕𝜃
= 0 or 

𝜕 ln 𝐿 𝑥1, … . , 𝑥𝑛 𝜃
𝜕𝜃

= 0 [+check it’s a max!]   



Likelihood vs. Probability

A probability function Pr(𝑥 ; 𝜃) is a function with input being an 
event 𝑥 for some fixed probability model (w/ param 𝜃). 

෍

𝑥

Pr 𝑥 ; 𝜃 = 1

A likelihood function ℒ 𝑥 𝜃) is a function with input being 𝜃 (the 
param of the prob. Model) for some fixed dataset 𝑥.

These notions are very closely connected, but answer different 
questions. We are trying to find the 𝜃 that maximizes likelihood, 
thus we are looking for the maximum likelihood estimator.
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Example – Coin Flips

Observe: Coin-flip outcomes 𝑥1, … , 𝑥𝑛, with 𝑛𝐻 heads, 𝑛𝑇 tails

– I.e., 𝑛𝐻 + 𝑛𝑇 = 𝑛
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𝜕

𝜕𝜃
𝐿 𝑥1, … . , 𝑥𝑛 𝜃 = ? ? ?

Goal: estimate 𝜃 = prob. heads. 

While it is possible to compute this derivative, it’s not always 
nice since we are working with products.

𝐿 𝑥1, … . , 𝑥𝑛 𝜃 = 𝜃𝑛𝐻 1 − 𝜃 𝑛𝑇



Log-Likelihood
We can save some work if we work with the log-likelihood instead of the 
likelihood directly.

Useful log properties
log 𝑎𝑏 = log 𝑎 + log 𝑏
log 𝑎/𝑏 = log 𝑎 − log(𝑏)

log 𝑎𝑏 = 𝑏𝑙𝑜𝑔(𝑎)
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Definition. The log-likelihood of independent observations 
𝑥1, … . , 𝑥𝑛 is

ℒℒ 𝑥1, … . , 𝑥𝑛 𝜃 = ln ℒ(𝑥1, … , 𝑥𝑛|𝜃)

= lnෑ

𝑖=1

𝑛

ℙ(𝑥𝑖; 𝜃) =෍

𝑖=1

𝑛

ln ℙ(𝑥𝑖; 𝜃)



Example – Coin Flips

Observe: Coin-flip outcomes 𝑥1, … , 𝑥𝑛, with 𝑛𝐻 heads, 𝑛𝑇 tails

– I.e., 𝑛𝐻 + 𝑛𝑇 = 𝑛
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ℒ 𝑥1, … . , 𝑥𝑛 𝜃 = 𝜃𝑛𝐻 1 − 𝜃 𝑛𝑇

Goal: estimate 𝜃 = prob. heads. 

ln ℒ 𝑥1, … . , 𝑥𝑛 𝜃 = 𝑛𝐻 ln 𝜃 + 𝑛𝑇 ln(1 − 𝜃)

𝜕

𝜕𝜃
ln ℒ 𝑥1, … . , 𝑥𝑛 𝜃 = 𝑛𝐻 ⋅

1

𝜃
− 𝑛𝑇 ⋅

1

1 − 𝜃

Solve 𝑛𝐻 ⋅
1

෡𝜃
− 𝑛𝑇 ⋅

1

1−෡𝜃
= 0

መ𝜃 =
𝑛𝐻

𝑛



Brain Break
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Agenda

• Idea: Estimation

• Maximum Likelihood Estimation (example: mystery coin)

• Continuous random variables

• General Steps
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The Continuous Case

Given 𝑛 samples 𝑥1, … , 𝑥𝑛 from a Gaussian 𝒩(𝜇, 𝜎2), estimate 

𝜃 = 𝜇, 𝜎2

15

Definition. The likelihood of independent observations 𝑥1, … . , 𝑥𝑛 is

ℒ 𝑥1, … . , 𝑥𝑛 𝜃 =ෑ

𝑖=1

𝑛

𝑓(𝑥𝑖; 𝜃)

Density function! (Why?)



Why density?

• Density ≠ probability, but:

– For maximizing likelihood, we really only care about relative 
likelihoods, and density captures that

– has desired property that likelihood increases with better fit to the 
model
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0−1−2−3−4 1 2 3 4 5 6

𝑛 samples 𝑥1, … , 𝑥𝑛 ∈ ℝ from Gaussian 𝒩(𝜇, 1). Most likely 𝜇?

[i.e., we are given the promise that the variance is one]
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0−1−2−3−4 1 2 3 4 5 6

𝑛 samples 𝑥1, … , 𝑥𝑛 ∈ ℝ from Gaussian 𝒩(𝜇, 1). Most likely 𝜇?

𝜇 = 0?

Unlikely …



19

0−1−2−3−4 1 2 3 4 5 6

𝑛 samples 𝑥1, … , 𝑥𝑛 ∈ ℝ from Gaussian 𝒩(𝜇, 1). Most likely 𝜇?

𝜇 = 3?

Better, but 
optimal? 



Example – Gaussian Parameters

Normal outcomes 𝑥1, … , 𝑥𝑛, known variance 𝜎2 = 1
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ℒ 𝑥1, … . , 𝑥𝑛 𝜃 =ෑ

𝑖=1

𝑛
1

2𝜋
𝑒−

𝑥𝑖−𝜃
2

2 =
1

2𝜋

𝑛

ෑ

𝑖=1

𝑛

𝑒−
𝑥𝑖−𝜃

2

2

Goal: estimate 𝜃 expectation

ln ℒ 𝑥1, … . , 𝑥𝑛 𝜃 = − 𝑛
ln 2𝜋

2
−෍

𝑖=1

𝑛
𝑥𝑖 − 𝜃 2

2



Example – Gaussian Parameters

Normal outcomes 𝑥1, … , 𝑥𝑛, known variance 𝜎2 = 1
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Goal: estimate 𝜃= expectation

ln ℒ 𝑥1, … . , 𝑥𝑛 𝜃 = − 𝑛
ln 2𝜋

2
−෍

𝑖=1

𝑛
𝑥𝑖 − 𝜃 2

2

𝜕

𝜕𝜃
ln ℒ 𝑥1, … . , 𝑥𝑛 𝜃 =෍

𝑖=1

𝑛

(𝑥𝑖 − 𝜃) =෍

𝑖=1

𝑛

𝑥𝑖 − 𝑛𝜃 = 0

Note:
𝜕

𝜕𝜃

𝑥𝑖−𝜃
2

2
=

1

2
⋅ 2 ⋅ 𝑥𝑖 − 𝜃 ⋅ −1 = 𝜃 − 𝑥𝑖

መ𝜃 =
σ𝑖
𝑛 𝑥𝑖
𝑛

In other words, MLE is the 
sample mean of the data.
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0−1−2−3−4 1 2 3 4 5 6

Next: 𝑛 samples 𝑥1, … , 𝑥𝑛 ∈ ℝ from Gaussian 𝒩(𝜇, 𝜎2). Most likely 𝜇 and 
𝜎2? 



Agenda

• Idea: Estimation

• Maximum Likelihood Estimation (example: mystery coin)

• Continuous random variables

• General Steps
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General Recipe

1. Input Given 𝑛 iid samples 𝑥1, … , 𝑥𝑛 from parametric model with 
parameters 𝜃.
2. Likelihood Define your likelihood ℒ 𝑥1, … . , 𝑥𝑛 𝜃 .

– For discrete ℒ 𝑥1, … . , 𝑥𝑛 𝜃 = ς𝑖=1
𝑛 Pr 𝑥𝑖 ; 𝜃

– For continuous ℒ 𝑥1, … . , 𝑥𝑛 𝜃 = ς𝑖=1
𝑛 𝑓 𝑥𝑖 ; 𝜃

3. Log  Compute ln ℒ 𝑥1, … . , 𝑥𝑛 𝜃

4. Differentiate Compute 
∂

𝜕𝜃
ln ℒ 𝑥1, … . , 𝑥𝑛 𝜃

5. Solve for ෠𝜃 by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a 
maximum, but we won’t ask you to do that in CSE 312.
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