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Joint PMFs and Joint Range

Definition. Let X and Y be discrete random variables. The Joint PMF
of Xand Y is

pX,y(Cl, b) —_ PI‘(X = a, Y —_ b)

____________________________________________________________________________________________________________________________________________________________________________

Definition. The joint range of py y is
QX,Y) ={(c,d) : pxy(c,d) > 0} € Q(X) x Q(Y)

____________________________________________________________________________________________________________________________________________________________________________

Note that

pxy(s,t) =1
(s, t)EQ(X)Y)



Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable
~and let events 4, ..., 4,, partition the sample space. Then,

E[X] = ) E[X|AJPr(4)

=1

Law of Total Expectation (random variable version). Let X be a
- random variable and Y be a discrete random variable. Then,

E[XI= ) EIXIY = y[Pr(¥ = y)
y €Q(Y)



Example: Computer Failures

Suppose your computer operates in a sequence of steps, and that at each step i
your computer will fail with probability p (independently of other steps). Let X be
the number of steps it takes your computer to fail. What is E'[X]? Cuils on Ficst

= #’5"6(75 P"‘ et Lailove \ o/ Stew
ELxIA]=|

)

A= computer Ywls on skp |

Erx) s ELXIAT (A + ECXIATP(A) ELX1A3= 14 Efo]

X s ‘MWJ"/(GSSMJS

P + (I+ED‘3)’ (1-p)

V)

= | ¢ (l"P)Efx]
=> !:_ij'zl/;: .



Agenda

* Markov’s Inequality 4
* Chebyshev’s Inequality



Tail Bounds (Idea)

Bounding the probability a random variable is far from its

mean. Usually statements of the form: /\@V

i a
Pr(X>a) <b
Pr(JIX — E[X]| = a) < b
i ==
Useful tool when a—a. A Jrton

* An approximation that is easy to compute is sufficient
* The process is too complex to analyze exactly



Examplea
Markov’s Inequality  xvo, ECx)=H

' Theorem. Let X be a random variable taking only non-negative values.
Then, forany t > 0,

Incredibly simplistic — only requires that the random variable is non-negative and
only needs you to know expectation. You don’t need to know anything else about
the distribution of X.




. Theorem. Let X be a (discrete) random variable taking

Markov’s Inequality — Proof only non-negative values. Then, forany ¢t > 0,

IP(X>t)<M

E(X) = Zx P(X = x)
> (0 becausex = 0

ZEX'P(X=x)+2x-[P(X:x) whenever P(X = x) >

0 (takes only non-
2 ) 2 P(X =x)

negative values)
x>t

= z t-PX=x) =¢- P(X > t) Follows by re-arranging terms

>t
= E[x‘.)

= B/xe) <



Example - Geometric Random Variable

Let X be geometric RV with parameter p

PX=0)=0-p) p E(X) = !

““How many times does Alice need to flip a biased coin until she sees heads, if

heads occurs with probability p?

What is the probability that X > 2E(X) = 2/p?

Markov’s inequality: P(X = 2/p) < —— oy _

1
— Can we do better?
2/p P
T

N | =

~ NS

Ecxy Yaso 9



Example

Suppose that the average number of ads you will see on a
website is 25. Give an upper bound on the probability of seeing

a website with 75 or more ads. crxJ

s
i HAA : = ¢
 Poll: pollev.com/hunter312 ‘
&b 025<p <05 i
c. 0.5<p<0.75
d. 0.75<p
' e. Unable to compute
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Example LY O ELx1= 25

Suppose that the average number of ads you will see on a
website is 25. Give an upper bound on the probability of seeing

a website with 20 or more ads.
ELX]

25
20

I\

(1

éPolI: pollev.com/hunter312 - 125

a 0<p<0.25 | |

'b. 0.25<p <05 :

c 05<p<0.75 2 .

: : oo S (285 is aluys e’
dd. 0.75 <p | r T A e

¥ Unable to compute
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Brain Break




Agenda

* Markov’s Inequality
* Chebyshev’s Inequality @
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[x3
Chebyshev’s Inequality  Markov: Plxye) < 557

Theorem. Let X be a random variable. Then, forany ¢ > 0, .
' N Neea EIXI, varl X)

2) X Cenn Voo “ﬁwhdo

P(X — E(X)| > 1) < 02

Definition of Variance

Proof: Define Z = X — E(X)
T2 = EL (X-E0x2 ) = Var (X)

E(Z2 ,//Var(X)
P(|Z| = t) p P(Z? > t?) <- (tz ) t—

p o 2
1Z| = tiff Z2 > t? Markov’s inequality (2= = 0)



Example - Geometric Random Variable

Let X be geometric RV with parameter p el Shes’s
_ . 1 1—p
PX=0=0-p)7p EX)=_ var(X) = =25

What is the probability that X = 2E(X) = 2/p?

EX) _1 p
Markov: P(X = <——===.-==
arkov: IP( 2/p) o 3 2
1 1 Var(X)
: > < — > = — 1 —
Chebyshev IP)(X_Z/p)_IP’(‘X . _p) 2 1-p

Not better, unlessp > 1/2 ®
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Example PAI-EDON &) < Y002
o =S

Ore Cnehyshev s Vo (0202 25

Suppose that the average number of ads you will see on a

website is 25 and the standard deviation of the number of ads

is 5. Give an upper bound on the probability of seeing a

website with 30 or more ads. B UX 230) < Bl 1%-25125)

7
R  Var (%)
: < x
 Poll: pollev.com/hunter312 - 5
Oa 0<p<0.25 g 2
b 025<p<05 = Tas
¢ 0.5<p<0.75 |
@d. 075<p

' e. Unable to compute
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Chebyshev’s Inequality — Repeated Experiments

““How many times does Alice need to flip a biased coin until she sees heads n times, if
heads occurs with probability p?

X = # of flips until n times “heads”
X; = # of flips between (i — 1)-st and i-th “heads” 4 = Z A
L

Note: X4, ..., X,, are independent and geometric with parameter p

n(1—p)

l
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Chebyshev’s Inequality — Coin Flips

““How many times does Alice need to flip a biased coin until she sees heads n times, if
heads occurs with probability p?

n(l-p)

l

What is the probability that X = 2E(X) = 2n/p?

EX) _n. P
Markov: P(X = 2n/p) < — e = p 2m

n

— n?/p?  n

Chebyshev: P(X = 2n/p) < P (‘X _N s 2) < VarX) _1-p

pl D
Goestozeroasn — o © 18




Tail Bounds

Useful for approximations of complex systems. How good the
approximation is depends on the actual distribution and the
context you are using it in.

— Usually loose upper-bounds are okay when designing for worst-
case

Generally (but not always) making more assumptions about
your random variable leads to a more accurate upper-bounder.
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