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Joint PMFs and Joint Range
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Definition. Let 𝑋 and 𝑌 be discrete random variables. The Joint PMF  
of 𝑋 and 𝑌 is

𝑝𝑋,𝑌(𝑎, 𝑏) = Pr(𝑋 = 𝑎, 𝑌 = 𝑏)

Definition. The joint range of 𝑝𝑋,𝑌 is

Ω 𝑋, 𝑌 = 𝑐, 𝑑 ∶ 𝑝𝑋,𝑌 𝑐, 𝑑 > 0 ⊆ Ω 𝑋 × Ω 𝑌

Note that

෍

𝑠,𝑡 ∈Ω(𝑋,𝑌)

𝑝𝑋,𝑌 𝑠, 𝑡 = 1



Law of Total Expectation
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Law of Total Expectation (event version). Let 𝑋 be a random variable 
and let events 𝐴1, … , 𝐴𝑛 partition the sample space. Then,

𝐸[𝑋] =෍

𝑖=1

𝑛

𝐸 𝑋 𝐴𝑖 Pr(𝐴𝑖)

Law of Total Expectation (random variable version). Let 𝑋 be a 
random variable and 𝑌 be a discrete random variable. Then,

𝐸[𝑋] = ෍

𝑦 ∈Ω(𝑌)

𝐸 𝑋 𝑌 = 𝑦 Pr(𝑌 = 𝑦)



Example: Computer Failures

Suppose your computer operates in a sequence of steps, and that at each step 𝑖
your computer will fail with probability 𝑝 (independently of other steps). Let 𝑋 be 
the number of steps it takes your computer to fail. What is 𝐸[𝑋]?
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Agenda

• Markov’s Inequality

• Chebyshev’s Inequality
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Tail Bounds (Idea)

Bounding the probability a random variable is far from its 
mean. Usually statements of the form:

Pr 𝑋 ≥ 𝑎 ≤ 𝑏
Pr |𝑋 − 𝐸 𝑋 | ≥ 𝑎 ≤ 𝑏

Useful tool when

• An approximation that is easy to compute is sufficient

• The process is too complex to analyze exactly
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Markov’s Inequality 
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Theorem. Let 𝑋 be a random variable taking only non-negative values. 
Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤
𝔼 𝑋

𝑡
. 

Incredibly simplistic – only requires that the random variable is non-negative and 
only needs you to know expectation. You don’t need to know anything else about 
the distribution of 𝑋.



Markov’s Inequality – Proof  
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Theorem. Let 𝑋 be a (discrete) random variable taking 
only non-negative values. Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤
𝔼 𝑋

𝑡
. 

𝔼 𝑋 =෍

𝑥

𝑥 ⋅ ℙ(𝑋 = 𝑥)

=෍

𝑥≥𝑡

𝑥 ⋅ ℙ(𝑋 = 𝑥) +෍

𝑥<𝑡

𝑥 ⋅ ℙ(𝑋 = 𝑥)

≥෍

𝑥≥𝑡

𝑥 ⋅ ℙ(𝑋 = 𝑥)

≥෍

𝑥≥𝑡

𝑡 ⋅ ℙ(𝑋 = 𝑥) = 𝑡 ⋅ ℙ(𝑋 ≥ 𝑡)

≥ 0 because 𝑥 ≥ 0
whenever ℙ 𝑋 = 𝑥 ≥
0 (takes only non-
negative values)  

Follows by re-arranging terms 
… 



Example – Geometric Random Variable

Let 𝑋 be geometric RV with parameter 𝑝
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ℙ 𝑋 = 𝑖 = 1 − 𝑝 𝑖−1𝑝 𝔼 𝑋 =
1

𝑝

“How many times does Alice need to flip a biased coin until she sees heads, if 
heads occurs with probability 𝑝?

What is the probability that 𝑋 ≥ 2𝔼 𝑋 = 2/𝑝? 

Markov’s inequality: ℙ 𝑋 ≥ 2/𝑝 ≤
𝔼 𝑋

2/𝑝
=

1

𝑝
⋅
𝑝

2
=

1

2
Can we do better?



Example

Suppose that the average number of ads you will see on a 
website is 25. Give an upper bound on the probability of seeing 
a website with 75 or more ads. 
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Poll:  pollev.com/hunter312
a. 0 ≤ 𝑝 < 0.25
b. 0.25 ≤ 𝑝 < 0.5
c. 0.5 ≤ 𝑝 < 0.75
d. 0.75 ≤ 𝑝
e. Unable to compute



Example

Suppose that the average number of ads you will see on a 
website is 25. Give an upper bound on the probability of seeing 
a website with 20 or more ads. 

11

Poll:  pollev.com/hunter312
a. 0 ≤ 𝑝 < 0.25
b. 0.25 ≤ 𝑝 < 0.5
c. 0.5 ≤ 𝑝 < 0.75
d. 0.75 ≤ 𝑝
e. Unable to compute



Brain Break



Agenda

• Markov’s Inequality

• Chebyshev’s Inequality
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Chebyshev’s Inequality 
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Theorem. Let 𝑋 be a random variable. Then, for any 𝑡 > 0,

ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤
Var 𝑋

𝑡2
. 

Proof: Define 𝑍 = 𝑋 − 𝔼 𝑋

ℙ |𝑍| ≥ 𝑡 = ℙ 𝑍2 ≥ 𝑡2 ≤
𝔼 𝑍2

𝑡2
=
Var 𝑋

𝑡2

Markov’s inequality (𝑍2 ≥ 0)

Definition of Variance

|𝑍| ≥ 𝑡 iff 𝑍2 ≥ 𝑡2



Example – Geometric Random Variable

Let 𝑋 be geometric RV with parameter 𝑝
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ℙ 𝑋 = 𝑖 = 1 − 𝑝 𝑖−1𝑝 𝔼 𝑋 =
1

𝑝

What is the probability that 𝑋 ≥ 2𝔼 𝑋 = 2/𝑝? 

Markov: ℙ 𝑋 ≥ 2/𝑝 ≤
𝔼 𝑋

2/𝑝
=

1

𝑝
⋅
𝑝

2
=

1

2

Var 𝑋 =
1 − 𝑝

𝑝2

Chebyshev: ℙ 𝑋 ≥ 2/𝑝 ≤ ℙ 𝑋 −
1

𝑝
≥

1

𝑝
≤

Var 𝑋

1/𝑝2
= 1 − 𝑝

Not better, unless 𝑝 > 1/2 



Example

Suppose that the average number of ads you will see on a 
website is 25 and the standard deviation of the number of ads 
is 5. Give an upper bound on the probability of seeing a 
website with 30 or more ads. 
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Poll:  pollev.com/hunter312
a. 0 ≤ 𝑝 < 0.25
b. 0.25 ≤ 𝑝 < 0.5
c. 0.5 ≤ 𝑝 < 0.75
d. 0.75 ≤ 𝑝
e. Unable to compute



Chebyshev’s Inequality – Repeated Experiments
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“How many times does Alice need to flip a biased coin until she sees heads 𝑛 times, if 
heads occurs with probability 𝑝?

𝑋 = # of flips until 𝑛 times “heads”

𝑋𝑖 = # of flips between (𝑖 − 1)-st and 𝑖-th “heads”
𝑋 =෍

𝑖

𝑋𝑖

Note: 𝑋1, … , 𝑋𝑛 are independent and geometric with parameter 𝑝

𝔼 𝑋 = 𝔼 ෍

𝑖

𝑋𝑖 =෍

𝑖

𝔼 𝑋𝑖 =
𝑛

𝑝
Var 𝑋 =෍

𝑖

Var 𝑋𝑖 =
𝑛(1 − 𝑝)

𝑝2



Chebyshev’s Inequality – Coin Flips

18

“How many times does Alice need to flip a biased coin until she sees heads 𝑛 times, if 
heads occurs with probability 𝑝?

𝔼 𝑋 = 𝔼 ෍

𝑖

𝑋𝑖 =෍

𝑖

𝔼 𝑋𝑖 =
𝑛

𝑝
Var 𝑋 =෍

𝑖

Var 𝑋𝑖 =
𝑛(1 − 𝑝)

𝑝2

What is the probability that 𝑋 ≥ 2𝔼 𝑋 = 2𝑛/𝑝? 

Markov: ℙ 𝑋 ≥ 2𝑛/𝑝 ≤
𝔼 𝑋

2𝑛/𝑝
=

𝑛

𝑝
⋅
𝑝

2𝑛
=

1

2

Chebyshev: ℙ 𝑋 ≥ 2𝑛/𝑝 ≤ ℙ 𝑋 −
𝑛

𝑝
≥

𝑛

𝑝
≤

Var 𝑋

𝑛2/𝑝2
=

1−𝑝

𝑛

Goes to zero as 𝑛 → ∞ ☺



Tail Bounds

Useful for approximations of complex systems. How good the 
approximation is depends on the actual distribution and the 
context you are using it in.

– Usually loose upper-bounds are okay when designing for worst-
case

Generally (but not always) making more assumptions about 
your random variable leads to a more accurate upper-bounder.
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