Welcome! Ask Q5 or say "Hi" in chat before / Luving / Lev class CSE 312 Foundations of Computing II

Lecture 22: Tail Bounds

PAUL G. ALLEN SCHOOL Rachel Lin, Hunter Schafer

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun's and Anna Karlin's slides for 312 20su and 20au

Music: Peach Pit

Joint PMFs and Joint Range

Definition. Let *X* and *Y* be discrete random variables. The **Joint PMF** of *X* and *Y* is

$$p_{X,Y}(a,b) = \Pr(X = a, Y = b)$$

Definition. The **joint range** of $p_{X,Y}$ is $\Omega(X,Y) = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega(X) \times \Omega(Y)$

Note that

$$\sum_{(s,t)\in\Omega(X,Y)}p_{X,Y}(s,t)=1$$

Law of Total Expectation

Law of Total Expectation (event version). Let *X* be a random variable and let events A_1, \dots, A_n partition the sample space. Then, $E[X] = \sum_{i=1}^{n} E[X|A_i] Pr(A_i)$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$E[X] = \sum_{y \in \Omega(Y)} E[X|Y = y] \Pr(Y = y)$$

Example: Computer Failures

Suppose your computer operates in a sequence of steps, and that at each step *i* your computer will fail with probability p (independently of other steps). Let X be the number of steps it takes your computer to fail. What is E[X]? Fails on first E[XIA]=1 X= # steps uptil first failure A = computer fails on step 1 E[XIA]= I+E[X] E[x] = E[x 1A] Pr(A) + E[x1A]Pr(A) X is memory lessness = | · P + (1+E[×])· (1-P) = 1 + (1-p)E[X] => E[X]= %

Agenda

- Markov's Inequality
- Chebyshev's Inequality

Tail Bounds (Idea)

Bounding the probability a random variable is far from its mean. Usually statements of the form:

 $\Pr(X \ge a) \le b$ $\Pr(|X - E[X]| \ge a) \le b$

Useful tool when

- An approximation that is easy to compute is sufficient
- The process is too complex to analyze exactly

a

Markov's Inequality

```
Example
XYO, ECXJ=4
                   P_{r}(x \ge 12) \le \frac{E[x]}{12} = \frac{4}{12} = \frac{1}{3}
```

Theorem. Let X be a random variable taking only non-negative values. Then, for any t > 0,

Incredibly simplistic – only requires that the random variable is non-negative and only needs you to know expectation. You don't need to know anything else about the distribution of X.

Markov's Inequality – Proof

E(

Theorem. Let *X* be a (discrete) random variable taking only non-negative values. Then, for any t > 0,

 $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}.$

$$X) = \sum_{x} x \cdot \mathbb{P}(X = x)$$

= $\sum_{x \ge t} x \cdot \mathbb{P}(X = x) + \sum_{x < t} x \cdot \mathbb{P}(X = x)$
 $\ge \sum_{x \ge t} x \cdot \mathbb{P}(X = x)$
 $\ge \sum_{x \ge t} t \cdot \mathbb{P}(X = x) = t \cdot \mathbb{P}(X \ge t)$
 $\rightarrow \mathbb{P}(X \ge t) \le \frac{\mathbb{E}\Sigma \times \mathbb{P}(X)}{t}$

 ≥ 0 because $x \geq 0$ whenever $\mathbb{P}(X = x) \geq 0$ (takes only nonnegative values)

. . .

Follows by re-arranging terms

Example – Geometric Random Variable

Let *X* be geometric RV with parameter *p*

$$\mathbb{P}(X=i) = (1-p)^{i-1}p \qquad \qquad \mathbb{E}(X) = \frac{1}{p}$$

"How many times does Alice need to flip a biased coin until she sees heads, if heads occurs with probability p?

What is the probability that $X \ge 2\mathbb{E}(X) = 2/p$?

Markov's inequality:
$$\mathbb{P}(X \ge 2/p) \le \frac{\mathbb{E}(X)}{2/p} = \frac{1}{p} \cdot \frac{p}{2} = \frac{1}{2}$$

Can we do better?

9

Example

(X20), E[X]=25

Suppose that the average number of ads you will see on a website is 25. Give an upper bound on the probability of seeing a website with 75 or more ads. $P_{C}(x \ge 75) \le \frac{E \sum x}{25}$

$$(75) \leq \frac{EIX}{75}$$
$$= \frac{25}{75}$$
$$= \frac{1}{2}$$

Example $\times 20$, E[x] = 25

Suppose that the average number of ads you will see on a website is 25. Give an upper bound on the probability of seeing a website with 20 or more ads.

$$P_{r}(X \ge 20) \le \frac{E[X]}{20}$$
$$= \frac{25}{20}$$
$$= 1.25$$

Prob 5 1.25 is always true!

Brain Break

Agenda

- Markov's Inequality
- Chebyshev's Inequality

Chebyshev's Inequality $M_{arkov}: Pr(X \ge t) \le \frac{E[X]}{t}$

Theorem. Let X be a random variable. Then, for any
$$t > 0$$
, $\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}$. $\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}$.

Proof: Define $Z = X - \mathbb{E}(X)$ $\mathbb{E}[2^2] = \mathbb{E}[(X - \mathbb{E}[X])^2] = Var(X)$ $\mathbb{P}(|Z| \ge t) = \mathbb{P}(Z^2 \ge t^2) \le \frac{\mathbb{E}(Z^2)}{t^2} = \frac{Var(X)}{t^2}$ $|Z| \ge t \text{ iff } Z^2 \ge t^2$ Markov's inequality $(Z^2 \ge 0)$ **Example – Geometric Random Variable**

Let *X* be geometric RV with parameter *p*

$$\mathbb{P}(X=i) = (1-p)^{i-1}p \qquad \mathbb{E}(X) = \frac{1}{p}$$

$$Var(X) = \frac{1-p}{p^2}$$

What is the probability that $X \ge 2\mathbb{E}(X) = 2/p$?

Markov:
$$\mathbb{P}(X \ge 2/p) \le \frac{\mathbb{E}(X)}{2/p} = \frac{1}{p} \cdot \frac{p}{2} = \frac{1}{2}$$

Chebyshev: $\mathbb{P}(X \ge 2/p) \le \mathbb{P}\left(\left|X - \frac{1}{p}\right| \ge \frac{1}{p}\right) \le \frac{\operatorname{Var}(X)}{1/p^2} = 1-p$

Not better, unless $p > 1/2 \otimes$

Example

()se Chehyshev's $V_{\alpha}(x)=\sigma^{2}=25$ Suppose that the average number of ads you will see on a website is 25 and the standard deviation of the number of ads is 5. Give an upper bound on the probability of seeing a website with 30 or more ads.

Pr(IX-E[X]]2t) < Var(X)/22

	Poll: pollev.com/hunter312	
С	а.	$0 \le p < 0.25$
_	<i>b.</i>	$0.25 \le p < 0.5$
	C.	$0.5 \le p < 0.75$
3	d.	$0.75 \le p$
	e.	Unable to compute

Chebyshev's Inequality – Repeated Experiments

"How many times does Alice need to flip a biased coin <u>until she sees heads n</u> times, if heads occurs with probability p?

$$X = #$$
 of flips until n times "heads"
 $X_i = #$ of flips between $(i - 1)$ -st and i -th "heads"

$$X = \sum_{i} X_{i}$$

Note: X_1, \ldots, X_n are independent and geometric with parameter p

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{i} X_{i}\right) = \sum_{i} \mathbb{E}(X_{i}) = \frac{n}{p} \qquad \text{Var}(X) = \sum_{i} \text{Var}(X_{i}) = \frac{n(1-p)}{p^{2}}$$

Chebyshev's Inequality – Coin Flips

"How many times does Alice need to flip a biased coin <u>until she sees heads n</u> times, if heads occurs with probability p?

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{i} X_{i}\right) = \sum_{i} \mathbb{E}(X_{i}) = \frac{n}{p} \quad \operatorname{Var}(X) = \sum_{i} \operatorname{Var}(X_{i}) = \frac{n(1-p)}{p^{2}}$$

What is the probability that $X \ge 2\mathbb{E}(X) = 2n/p$?

Markov:
$$\mathbb{P}(X \ge 2n/p) \le \frac{\mathbb{E}(X)}{2n/p} = \frac{n}{p} \cdot \frac{p}{2n} = \frac{1}{2}$$

Chebyshev: $\mathbb{P}(X \ge 2n/p) \le \mathbb{P}\left(\left|X - \frac{n}{p}\right| \ge \frac{n}{p}\right) \le \frac{\operatorname{Var}(X)}{n^2/p^2} = \frac{1-p}{n}$
Goes to zero as $n \to \infty$ \odot

Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

 Usually loose upper-bounds are okay when designing for worstcase

Generally (but not always) making more assumptions about your random variable leads to a more accurate upper-bounder.