Joint PMFs and Joint Range

Definition. Let X and Y be discrete random variables. The **Joint PMF** of X and Y is

$$p_{X,Y}(a, b) = \Pr(X = a, Y = b)$$

Definition. The **joint range** of $p_{X,Y}$ is

$$\Omega(X, Y) = \{(c, d) : p_{X,Y}(c, d) > 0\} \subseteq \Omega(X) \times \Omega(Y)$$

Note that

$$\sum_{(s,t) \in \Omega(X,Y)} p_{X,Y}(s, t) = 1$$
Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_1, \ldots, A_n partition the sample space. Then,

$$E[X] = \sum_{i=1}^{n} E[X|A_i]Pr(A_i)$$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$E[X] = \sum_{y \in \Omega(Y)} E[X|Y = y]Pr(Y = y)$$
Example: Computer Failures

Suppose your computer operates in a sequence of steps, and that at each step i your computer will fail with probability p (independently of other steps). Let X be the number of steps it takes your computer to fail. What is $E[X]$?

$$X = \# \text{steps until first failure}$$

$A = \text{computer fails on step } 1$

$$E[X] = E[X \mid A] Pr(A) + E[X \mid \bar{A}] Pr(\bar{A})$$

$$= 1 \cdot p + (1 + E[X]) \cdot (1-p)$$

$$= 1 + (1-p)E[X]$$

$$\Rightarrow E[X] = \frac{1}{p}$$

X is memoryless.
Agenda

• Markov’s Inequality
• Chebyshev’s Inequality
Tail Bounds (Idea)

Bounding the probability a random variable is far from its mean. Usually statements of the form:

\[\Pr(X \geq a) \leq b \]
\[\Pr(|X - E[X]| \geq a) \leq b \]

Useful tool when

- An approximation that is easy to compute is sufficient
- The process is too complex to analyze exactly
Markov’s Inequality

Theorem. Let X be a random variable taking only non-negative values. Then, for any $t > 0$,

$$\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[X]}{t}.$$

Incredibly simplistic – only requires that the random variable is non-negative and only needs you to know expectation. You don’t need to know anything else about the distribution of X.

Example

$x > 0$, $\mathbb{E}[X] = 4$

$$\mathbb{P}(X \geq 12) \leq \frac{4}{12} = \frac{1}{3}$$
Markov’s Inequality – Proof

\[\mathbb{E}(X) = \sum_x x \cdot \mathbb{P}(X = x) \]

\[= \sum_{x \geq t} x \cdot \mathbb{P}(X = x) + \sum_{x < t} x \cdot \mathbb{P}(X = x) \]

\[\geq \sum_{x \geq t} t \cdot \mathbb{P}(X = x) = t \cdot \mathbb{P}(X \geq t) \]

\[\Rightarrow \mathbb{P}(X \geq t) \leq \frac{\mathbb{E}(X)}{t} \geq 0 \text{ because } x \geq 0 \]

whenever \(\mathbb{P}(X = x) \geq 0 \) (takes only non-negative values)

Theorem. Let \(X \) be a (discrete) random variable taking only non-negative values. Then, for any \(t > 0 \),

\[\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}(X)}{t}. \]
Example – Geometric Random Variable

Let X be geometric RV with parameter p

\[\Pr(X = i) = (1 - p)^{i-1}p \quad \text{and} \quad \mathbb{E}(X) = \frac{1}{p} \]

“How many times does Alice need to flip a biased coin until she sees heads, if heads occurs with probability p?

What is the probability that $X \geq 2\mathbb{E}(X) = 2/p$?

Markov’s inequality: $\Pr(X \geq 2/p) \leq \frac{\mathbb{E}(X)}{2/p} = \frac{1}{p} \cdot \frac{p}{2} = \frac{1}{2}$

Can we do better?
Example

\(\mathbb{E}[X] = 25 \)

Suppose that the average number of ads you will see on a website is 25. Give an upper bound on the probability of seeing a website with 75 or more ads.

\[
\Pr(X \geq 75) \leq \frac{\mathbb{E}[X]}{75} = \frac{25}{75} = \frac{1}{3}
\]

Poll: pollev.com/hunter312

- a. 0 \leq p < 0.25
- b. 0.25 \leq p < 0.5
- c. 0.5 \leq p < 0.75
- d. 0.75 \leq p
- e. Unable to compute
Example

\[x \geq 0, \quad \mathbb{E}[x] = 25 \]

Suppose that the average number of ads you will see on a website is 25. Give an upper bound on the probability of seeing a website with 20 or more ads.

\[P(x \geq 20) \leq \frac{\mathbb{E}[x]}{20} \]
\[= \frac{25}{20} \]
\[= 1.25 \]

Poll: pollev.com/hunter312

- a. \(0 \leq p < 0.25 \)
- b. \(0.25 \leq p < 0.5 \)
- c. \(0.5 \leq p < 0.75 \)
- d. \(0.75 \leq p \)

\[\text{Unable to compute} \]
Brain Break
Agenda

• Markov’s Inequality
• Chebyshev’s Inequality
Chebyshev’s Inequality

Theorem. Let X be a random variable. Then, for any $t > 0$,

$$\Pr(|X - \mathbb{E}(X)| \geq t) \leq \frac{\text{Var}(X)}{t^2}.$$

Proof: Define $Z = X - \mathbb{E}(X)$

$$\mathbb{E}[Z^2] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \text{Var}(X)$$

$$\Pr(|Z| \geq t) = \Pr(Z^2 \geq t^2) \leq \frac{\mathbb{E}(Z^2)}{t^2} = \frac{\text{Var}(X)}{t^2}.$$

$|Z| \geq t$ iff $Z^2 \geq t^2$

Markov’s inequality ($Z^2 \geq 0$)
Example – Geometric Random Variable

Let X be geometric RV with parameter p

$$
P(X = i) = (1 - p)^{i-1}p \quad \mathbb{E}(X) = \frac{1}{p} \quad \text{Var}(X) = \frac{1 - p}{p^2}
$$

What is the probability that $X \geq 2\mathbb{E}(X) = 2/p$?

Markov: $\mathbb{P}(X \geq 2/p) \leq \frac{\mathbb{E}(X)}{2/p} = \frac{1/p}{2} = \frac{1}{2}$

Chebyshev: $\mathbb{P}(X \geq 2/p) \leq \mathbb{P}\left(\left|X - \frac{1}{p}\right| \geq \frac{1}{p}\right) \leq \frac{\text{Var}(X)}{1/p^2} = 1 - p$

Not better, unless $p > 1/2$
Example

Suppose that the average number of ads you will see on a website is 25 and the standard deviation of the number of ads is 5. Give an upper bound on the probability of seeing a website with 30 or more ads.

\[P_r(x \geq 30) \leq P_r\left(\frac{|x - E|}{\sigma} \geq k\right) \leq \frac{\text{Var}(x)}{k^2} \]

\[\sigma = 5 \]

\[\text{Var}(x) = \sigma^2 = 25 \]

Poll: pollev.com/hunter312

a. 0 ≤ p < 0.25
b. 0.25 ≤ p < 0.5
c. 0.5 ≤ p < 0.75
d. 0.75 ≤ p
e. Unable to compute
Chebyshev’s Inequality – Repeated Experiments

“How many times does Alice need to flip a biased coin until she sees heads \(n \) times, if heads occurs with probability \(p \)?

\[X = \# \text{ of flips until } n \text{ times “heads”} \]

\[X_i = \# \text{ of flips between } (i - 1)\text{-st and } i\text{-th “heads”} \]

Note: \(X_1, \ldots, X_n \) are independent and geometric with parameter \(p \)

\[\mathbb{E}(X) = \mathbb{E} \left(\sum_i X_i \right) = \sum_i \mathbb{E}(X_i) = \frac{n}{p} \]

\[\text{Var}(X) = \sum_i \text{Var}(X_i) = \frac{n(1 - p)}{p^2} \]
Chebyshev’s Inequality – Coin Flips

“How many times does Alice need to flip a biased coin until she sees heads n times, if heads occurs with probability p?

$\mathbb{E}(X) = \mathbb{E} \left(\sum_i X_i \right) = \sum_i \mathbb{E}(X_i) = \frac{n}{p}$
\[\text{Var}(X) = \sum_i \text{Var}(X_i) = \frac{n(1 - p)}{p^2} \]

What is the probability that $X \geq 2\mathbb{E}(X) = 2n/p$?

Markov: $\mathbb{P}(X \geq 2n/p) \leq \frac{\mathbb{E}(X)}{2n/p} = \frac{n}{p} \cdot \frac{p}{2n} = \frac{1}{2}$

Chebyshev: $\mathbb{P}(X \geq 2n/p) \leq \mathbb{P} \left(\left| X - \frac{n}{p} \right| \geq \frac{n}{p} \right) \leq \frac{\text{Var}(X)}{n^2/p^2} = \frac{1-p}{n}$

Goes to zero as $n \to \infty$ ☺
Tail Bounds

Useful for approximations of complex systems. How good the approximation is depends on the actual distribution and the context you are using it in.

– Usually loose upper-bounds are okay when designing for worst-case

Generally (but not always) making more assumptions about your random variable leads to a more accurate upper-bounder.