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Agenda

* Poisson Distribution a
* Approximate Binomial distribution using Poisson distribution



. . o . Siméon Denis Poisson
Poisson Distribution e
* Suppose “events” happen, independently, at an average rate of A per

unit time.

* Let X be the actual number of events happening in a given time
unit. Then Xis a Poisson r.v. with parameter A (denoted X ~ Poi(2))
and has distribution (PMF):
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/ {IP(X =@ =e .=
Several examples of “Poisson processes’:
f cars passing through a traffic li htm h
(#of requests to web serverm —— | Assume

#f photons hitting a light detector(_n a given interval ffixed average rate

«( # of patients arriving to ER(within an hour .
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Probability Mass Function
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Validity of Distribution




Expectation
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Theorem. If X is a Poisson RV with parameter 4, then Var(X) = 4
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Similar to the previous proof
1 Verify offline.
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Poisson Random Variables

Definition. A Poisson random variable X with parameter 4 > 0 is such
thatforalli =0,1,2,3 ..,

Poisson approximates binomial when n is very large, p is very small, and A
= np is “moderate” (e.g.n > 20 and p < 0.05, n>100and p < 0.1)

Vo——

Formally, Binomial is Poisson in the limit as
n — oo (equivalently, p — 0) while holding np = A
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Example - Model the process of cars passing through a light in 1 hour

X =# cars ing through a lightin 1 hour
Knowt E(X) = A for some given 4 > 0

1 hour
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Discretize problem:@ntervals, each of length 71;

In each interval, a car passes by with probability —(assume < 1 car can pass by)

Bernoulli X; = 1 if carin i-th interval (O otherwise). P(X; = 1) = '1—

X =YX X~ bmomlal(n P(X —(:Q (")( ) (1 — —) =

indeed! E(X)=A =npP = )\-{
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Don’t like discretization Xis binomial P(X = ) = (1) (5) (1-5)
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Probability Mass Function — Convergence of Binomials
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Bin(l_O,(_)_.E)

as n — oo, Binomial(n, p = A/n) - poi(1)
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From Binomial to Poisson

n — ©o

X ~ Bin(n, p) np = A X ~ Poisson(A)

A
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Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

« Send bit string of lengt@/

* Probability of (independent) bit corruptionis p = 10®
* What is probability that message arrives uncorrupted?

Using X ~ Poi(A = np—1o4-1o6 oo1©
0.01Y

PX=0)=e* —=7001 @— 0.990049834

~ 0.9900498(2]
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Sum of Independent Poisson RVs
 Theorem. Let X~Poi(},) and Y~Poi(1,) such that 1 = 1, + 4,.
LetZ=(X+Y).Forallz=0,123.., T

More generally, let X, ~Poi(4,), -, X, ~Poi(4,) such that 1 = X;4,.

LetZ = ZiXi
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Sum of Independent Poisson RVs

Theorem Let X~Poi(A,) and Y~Poi(A,) suchthat 1 = /11 + A,.

letZ=(X+Y).Forallz=0,1,23.., nie) = 2— PLAL 3) 1

= LPLBIME__)

Poll: pollev/rachel312

P(Z=@) =S, PX=j(Y=z—)) J’° A. Allof them are right
P(Z =z) =13 —OP(X =j=2z-) \/(kThe flrsm

[P(Z—l)——-z P(Y""Z—”X"‘])P(X-—]) C. Only1|sr|ght

D. Don’tknow
P(Z=2) =X P(Y =2z—j|X =)
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P(Z=2)=3_,P(X=j,Y =z—)) Law of total probability
/ / A]ﬁ /1Z j
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Independence

Binomial

_ 1
A. (/11 + /12)2 = @ y Theorem
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Poisson Random Variables

Definition. A Poisson random variable X with parameter 4 = 0 is such
thatforalli =0,1,2,3 ..,

General principle:
* Events happen at an averagerate ¢ Poisson approximates Binomial when nis large,

of A per time unit p is small, and np is moderate
* Number of events happeningata ¢ Sum of independent Poisson is still a Poisson
time unit X is distributed ' —

according to Poi(4)
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Next

* Continuous Random Variables a
* Probability Density Function
* Cumulative Density Function

Often we want to model experiments where the outcome is
not discrete.
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Example - Lightning Strike

Lightning strikes a pole within a one-minute time frame
* T =time of lightning strike
* Every time within [0,1] is equally likely

— Time measured with infinitesimal precision.

0] T =0.71237131931129576 ...

___________________________________________________________________________________
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Lightning strikes a pole within a one-minute time frame
* T =time of lightning strike
* Every point in time within [0,1] is equally likely

P(T >0.5) =%

r———

0.5 1
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Lightning strikes a pole within a one-minute time frame
* T =time of lightning strike
* Every point in time within [0,1] is equally likely

P(0.2<T<05)=05-02=0.3

| -

Y 0.2 0.5




Lightning strikes a pole within a one-minute time frame
* T =time of lightning strike
* Every point in time within [0,1] is equally likely

Y 0.5

P(T=05)=0
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Bottom line

* This gives rise to a different type of random variable
e P(T=x)=0forallx € [0,1]
* Yet, somehow we want

~P(Te[01]) =1

—P(T € [a,b]) =b —a

e How do we model the behavior of 77
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