CSE 312

Foundations of Computing II

Lecture 13: Poisson Distribution

Rachel Lin, Hunter Schafer

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun's and Anna Karlin's slides for 312 20su and 20au

Zoo of Discrete RVs! A Company of the last of the last

$X \sim \text{Unif}(a, b)$

$$P(X = k) = \frac{1}{b - a + 1}$$

$$E[X] = \frac{a + b}{2}$$

$$Var(X) = \frac{(b - a)(b - a + 2)}{12}$$

$X \sim \text{Ber}(p)$

$$P(X = 1) = p, P(X = 0) = 1 - p$$

$$E[X] = p$$

$$Var(X) = p(1 - p)$$

$X \sim \text{Bin}(n, p)$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

$$E[X] = np$$

$$Var(X) = np(1 - p)$$

$X \sim \text{Geo}(p)$

$$P(X = k) = (1 - p)^{k-1}p$$

$$E[X] = \frac{1}{p}$$

$$Var(X) = \frac{1 - p}{p^2}$$

$X \sim \text{NegBin}(r, p)$

$$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$$

$$E[X] = \frac{r}{p}$$

$$Var(X) = \frac{r(1-p)}{n^2}$$

$X \sim \text{HypGeo}(N, K, n)$

$$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

$$E[X] = n \frac{K}{N}$$

$$Var(X) = n \frac{K(N-K)(N-n)}{N^2(N-1)}$$

Agenda

Poisson Distribution

• Approximate Binomial distribution using Poisson distribution

Poisson Distribution

- Suppose "events" happen, independently, at an average rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted $X \sim Poi(\lambda)$) and has distribution (PMF):

$$\mathbb{P}(X = i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$

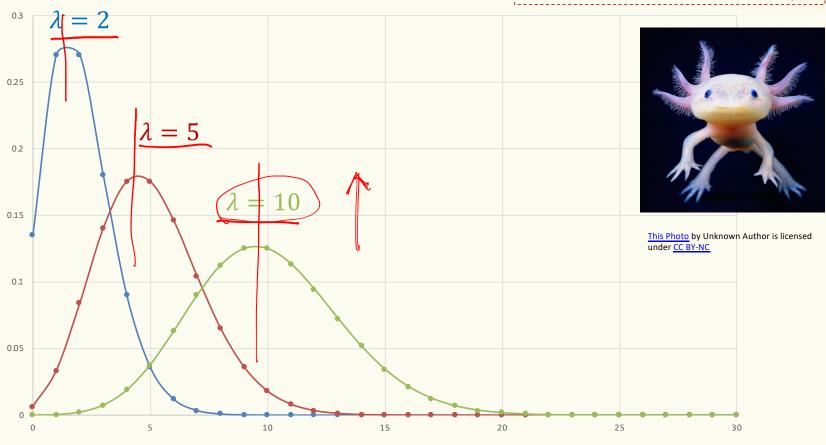
Several examples of "Poisson processes":

- # of cars passing through a traffic light in 1 hour
- # of requests to web servers in an hour
- of photons hitting a light detector in a given interval
- # of patients arriving to ER within an hour

Assume fixed average rate

Probability Mass Function

$$\mathbb{P}(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$



Validity of Distribution

$$\underline{\mathbb{P}(X=i)} = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

We first want to verify that Poisson probabilities sum up to 1.

$$\sum_{i=0}^{\infty} \mathbb{P}(X=i) = e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = e^{-\lambda} 2^{\lambda} = 1$$

Fact.
$$\sum_{i=0}^{\infty} \frac{x^i}{i!} = e^x$$

Expectation

$$\mathbb{P}(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

Theorem. If X is a Poisson RV with parameter λ , then

$$\mathbb{E}(X) = \lambda$$

$$\mathbb{E}(X) = \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!}$$

$$= \lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!}$$

$$= \lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!}$$

$$= \lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!}$$

$$= \lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!}$$

$$= \lambda \cdot 1 = \lambda$$

Variance

$$\mathbb{P}(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

Theorem. If X is a Poisson RV with parameter λ , then $Var(X) = \lambda$

Proof.
$$\mathbb{E}(X^2) = \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^i}{i!} \cdot i^2 = \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^i}{(i-1)!} i$$

$$= \lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i = \lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^j}{j!} \cdot (j+1)$$

$$= \lambda \left[\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^j}{j!} \cdot j + \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^j}{j!} \right] = \underline{\lambda^2 + \lambda}$$
Similar to the previous proof Verify offline.

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such

that for all i = 0,1,2,3 ...,

$$\mathbb{P}(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

Poisson approximates binomial when n is very large, p is very small, and λ = np is "moderate" (e.g. n > 20 and p < 0.05, n > 100 and p < 0.1)

Formally, Binomial is Poisson in the limit as $n \to \infty$ (equivalently, $p \to 0$) while holding $np = \lambda$

Example - Model the process of cars passing through a light in 1 hour

X = # cars passing through a light in 1 hour Know $\mathbb{E}(X) = \lambda$ for some given $\lambda > 0$

1 hour

Discretize problem: nintervals, each of length $\frac{1}{n}$.

In each interval, a car passes by with probability $\frac{\lambda}{n}$ (assume ≤ 1 car can pass by)

Bernoulli $X_i = 1$ if car in *i*-th interval (0 otherwise). $\mathbb{P}(X_i = 1) = \frac{\lambda}{n}$

$$X = \sum_{i=1}^{n} X_i$$

$$X \sim \text{binomial(np)}$$

$$X = \sum_{i=1}^{n} X_{i}$$

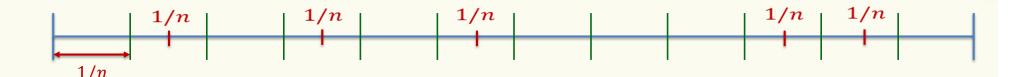
$$X \sim \text{binomial(np)}$$

$$\mathbb{P}(X = i) = \binom{n}{i} \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$$

$$\text{indeed! } \mathbb{E}(X) = \lambda = n p = n \frac{\lambda}{n}$$

Don't like discretization

X is binomial $\mathbb{P}(X=i) = \binom{n}{i} \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$



We want now $n \to \infty$

$$\mathbb{P}(X = i) = \underbrace{\binom{n}{i} \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}}_{i} = \underbrace{\frac{n!}{(n-i)! \, n^{i}}}_{i!} \underbrace{\left(1 - \frac{\lambda}{n}\right)^{n} \left(1 - \frac{\lambda}{n}\right)^{-i}}_{\rightarrow e^{-\lambda}}$$

$$\to \mathbb{P}(X = i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$

$$\to \mathbb{P}(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

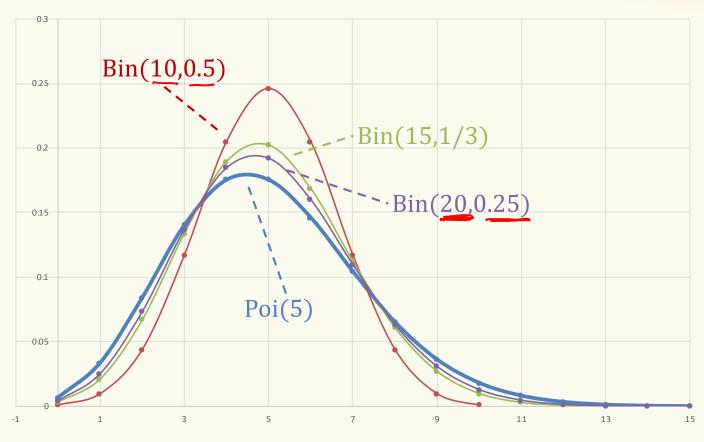
12

Probability Mass Function – Convergence of Binomials

$$\lambda = 5$$

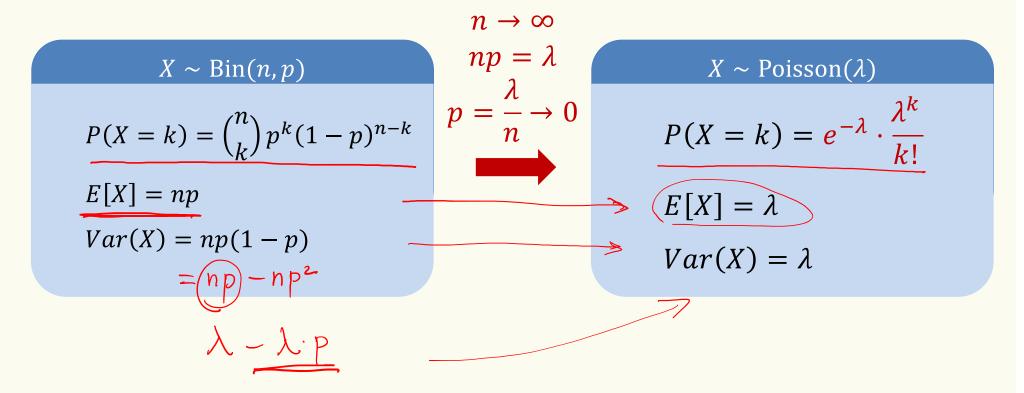
$$p = \frac{5}{n}$$

$$n = 10,15,20$$



as $n \to \infty$, Binomial(n, $p = \lambda/n$) $\to poi(\lambda)$

From Binomial to Poisson

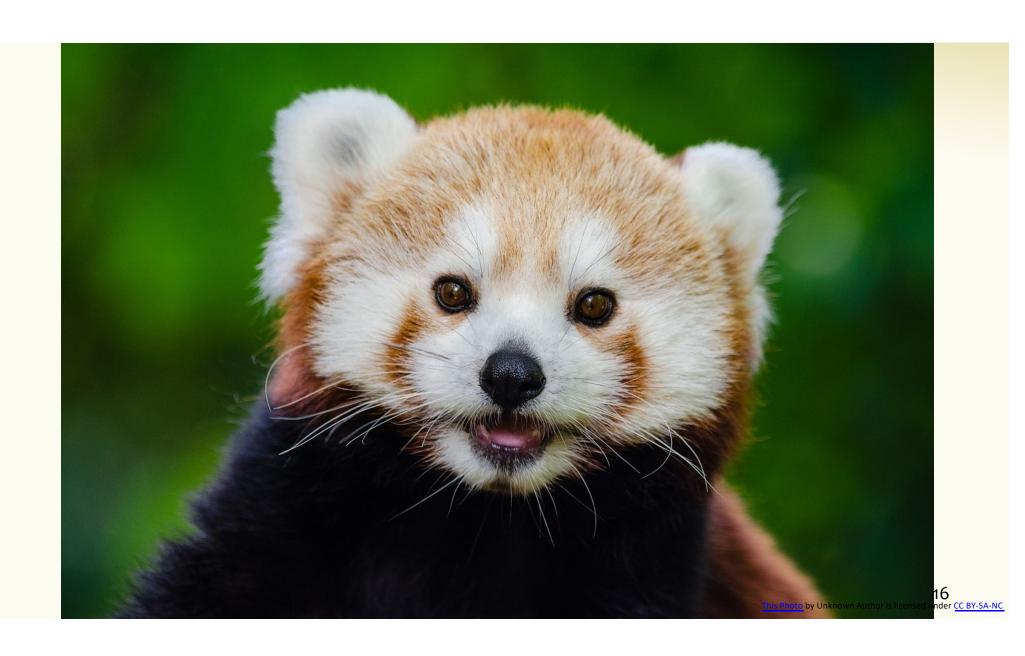


Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

- Send bit string of length n = 10⁴
- Probability of (independent) bit corruption is p = 10⁻⁶
- What is probability that message arrives uncorrupted?

Using X ~ Poi(
$$\lambda = np = 10^4 \cdot 10^{-6} = 0.01$$
)
$$\mathbb{P}(X = 0) = e^{-\lambda} \cdot \frac{\lambda^0}{0!} = e^{-0.01} \cdot \frac{0.01^0}{0!} = 0.990049834$$
Using Y ~ Bin(10^4 , 10^{-6})
$$\mathbb{P}(Y = 0) \approx 0.990049829$$



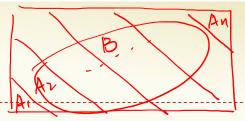
Sum of Independent Poisson RVs

More generally, let $X_1 \sim Poi(\lambda_1)$, \cdots , $X_n \sim Poi(\lambda_n)$ such that $\lambda = \Sigma_i \lambda_i$.

Let
$$Z = \sum_i X_i$$

$$\mathbb{P}(Z=z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}$$

Sum of Independent Poisson RVs



Theorem. Let $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$.

Let
$$Z = (X + Y)$$
. For all $z = 0,1,2,3...$,

$$\mathbb{P}(Z=z)=e^{-\lambda}\cdot\frac{\lambda^z}{z!}$$

$$\mathbb{P}(Z=z)=?$$

$$Y = z - j$$

$$Y =$$

1.
$$\mathbb{P}(\underline{Z} = \underline{z}) = \Sigma_{j=0}^{z} \mathbb{P}(X = j(Y = z - j))$$

2. $\mathbb{P}(Z=z) = \sum_{i=0}^{\infty} \mathbb{P}(X=j, Y=z-j)$

- 3. $\mathbb{P}(Z=z) = \overline{\Sigma_{j=0}^{z}} \mathbb{P}(Y=z-j|X=j) \mathbb{P}(X=j)$
- B. The first 3 are right

4. $\mathbb{P}(Z=z) = \sum_{i=0}^{z} \mathbb{P}(Y=z-j|X=j)$

- C. Only 1 is right
- D. Don't know

$$\mathbb{P}(Z=z) = \Sigma_{j=0}^k \mathbb{P}(X=j, Y=z-j)$$

Law of total probability

$$= \sum_{j=0}^{k} \mathbb{P}(X = j) \mathbb{P}(Y = z - j) = \sum_{j=0}^{k} e^{-\lambda_1} \cdot \frac{\lambda_1^j}{j!} \cdot e^{-\lambda_2} \frac{\lambda_2^{z-j}}{z - j!} \quad \text{Independence}$$

$$= \underbrace{e^{-\lambda}}_{j=0} \cdot \frac{1}{j! z - j!} \cdot \lambda_1^j \lambda_2^{z-j}$$

$$= e^{-\lambda} \left(\sum_{j=0}^{k} \frac{z!}{j! z - j!} \cdot \lambda_1^j \lambda_2^{z-j} \right) \frac{1}{z!}$$

$$= e^{-\lambda} \cdot (\lambda_1 + \lambda_2)^z \cdot \frac{1}{z!} = e^{-\lambda} \cdot (\lambda^z) \cdot \frac{1}{z!}$$

Binomial Theorem

(x+y)k

Poisson Random Variables

Definition. A **Poisson random variable** X with parameter $\lambda \geq 0$ is such that for all i = 0,1,2,3...,

$$\mathbb{P}(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to Poi(λ)
- Poisson approximates Binomial when n is large, p is small, and np is moderate
- Sum of independent Poisson is still a Poisson

Next

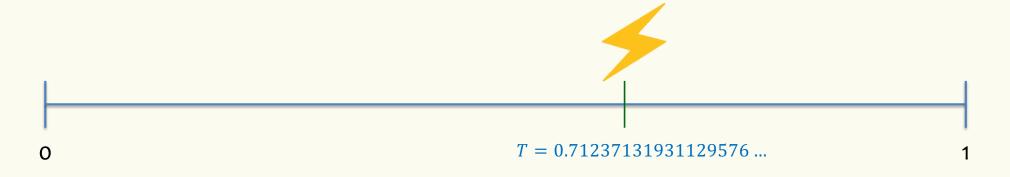
- Continuous Random Variables
- Probability Density Function
- Cumulative Density Function

Often we want to model experiments where the outcome is <u>not</u> discrete.

Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

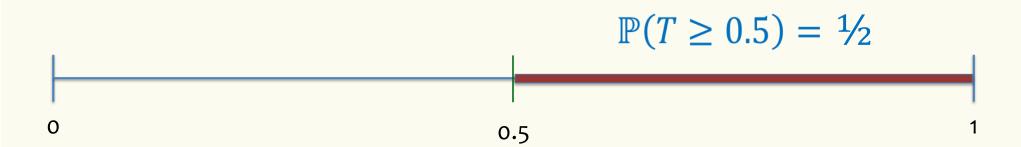
- T = time of lightning strike
- Every time within [0,1] is equally likely
 - Time measured with infinitesimal precision.



The outcome space is not discrete

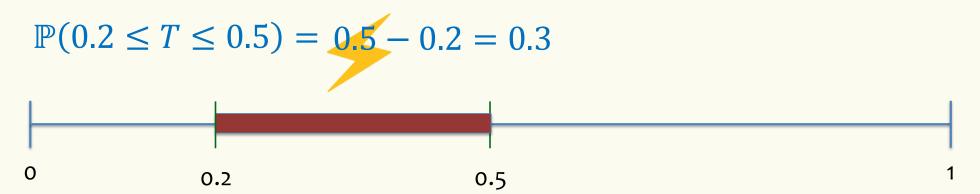
Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within [0,1] is equally likely



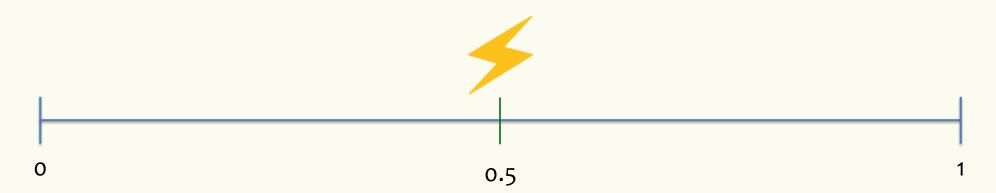
Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within [0,1] is equally likely



Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within [0,1] is equally likely



$$\mathbb{P}(T = 0.5) = 0$$

Bottom line

- This gives rise to a different type of random variable
- $\mathbb{P}(T = x) = 0 \text{ for all } x \in [0,1]$
- Yet, somehow we want

```
-\mathbb{P}(T \in [0,1]) = 1
-\mathbb{P}(T \in [a,b]) = b - a
-\dots
```

How do we model the behavior of T?