Feel free to ask Qs in chat before/after/during class

CSE 312

Foundations of Computing II

Lecture 9: Random Variables and Expectation

Rachel Lin, Hunter Schafer

Slide Credit: Based on Stefano Tessaro's slides for 312 19au

incorporating ideas from Alex Tsun's and Anna Karlin's slides for 312 20su and 20au

Last Time

Theorem. (Chain Rule) For events $\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_n$, $\mathbb{P}(\mathcal{A}_1 \cap \cdots \cap \mathcal{A}_n) = \mathbb{P}(\mathcal{A}_1) \cdot \mathbb{P}(\mathcal{A}_2 | \mathcal{A}_1) \cdot \mathbb{P}(\mathcal{A}_3 | \mathcal{A}_1 \cap \mathcal{A}_2) \cdots \mathbb{P}(\mathcal{A}_n | \mathcal{A}_1 \cap \mathcal{A}_2 \cap \cdots \cap \mathcal{A}_{n-1})$

Definition. Two events \mathcal{A} and \mathcal{B} are (statistically) independent if

$$\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}).$$

"Equivalently." $\mathbb{P}(A|B) = \mathbb{P}(A)$.

Definition. Two events \mathcal{A} and \mathcal{B} are **independent** conditioned on \mathcal{C} if $\mathbb{P}(\mathcal{C}) \neq 0$ and $\mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid \mathcal{C}) = \mathbb{P}(\mathcal{A} \mid \mathcal{C}) \cdot \mathbb{P}(\mathcal{B} \mid \mathcal{C})$.

Random Variables

- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Random Variables (Idea)

Often: We want to capture quantitative properties of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 2 coin tosses?

Random Variables

Definition. A random variable (RV) for a probability space

$$(\Omega, \mathbb{P})$$
 is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is called its range/support $X(\Omega)$

Example. Number of heads in 2 independent coin flips $\Omega = \{HH, HT, TH, TT\}$

$$Support$$

$$X(\mathcal{X}) = \{0,1,2\}$$

RV Example

$$\Omega = \text{unordered sets of 3 balls}$$

$$\Pr(\omega) = \frac{1}{|\Omega|} = \frac{1}{\binom{20}{3}}$$

20 balls labeled 1, 2, ..., 20 in a bin

- Draw a subset of 3 uniformly at random
- Let X = maximum of the 3 numbers on the balls

• Example:
$$X(2, 7, 5) = 7$$

$$X(1,2,3)=3$$

• Example: X(15, 3, 8) = 15

Poll: pollev.com/hunter312

$$X(\Omega) = \{3, 4, ..., 20\}$$

A.
$$20^3$$

D.
$$\binom{20}{3}$$

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Probability Mass Function (Idea)

Flipping two independent coins

$$\Omega = \{HH, HT, TH, TT\}$$

X = number of heads in the two flips

$$X(HH) = 2$$

$$X(HT) = 1$$

$$X(HH) = 2$$
 $X(HT) = 1$ $X(TH) = 1$ $X(TT) = 0$

$$X(TT) = 0$$

What is the support $X(\Omega)$?

$$X(\Omega) = \{0, 1, 2\}$$

What is the probability that X is 2? To answer this, we introduce the notion of a probability mass function (PMF) that describes this probability.

$$Pr(X = k)$$

$$P_{r}(X = k) = \begin{cases} 1/4, & k = 0 \\ 1/2, & k = 1 \\ 1/4, & k = 2 \\ 0, & \text{otherwise} \end{cases}$$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event

$$\sqrt{\{X = x\}} \stackrel{\text{def}}{=} \{\omega \in \Omega \mid X(\omega) = x\}$$

We write $\mathbb{P}(X = x) = \mathbb{P}(\{X = x\}) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$ where $\mathbb{P}(X = x)$ is the probability mass function (PMF) of X

Random variables partition the sample space.

$$\sum_{x \in X(\Omega)} \mathbb{P}(X = x) = 1$$

RV Example

General
$$\binom{(k-1)}{2}/\binom{20}{3}$$
, $k=3,4,...,20$
 $\Pr(X=k)=\begin{cases} 0 \end{cases}$, otherwise

20 balls labeled 1, 2, ..., 20 in a bin

- Draw a subset of 3 uniformly at random
- Let X = maximum of the 3 numbers on the balls

What is Pr(X = 20)?

$$P_{r}(X=20) = \frac{|\{X=20\}|}{|\Omega|} = \frac{\binom{14}{2}}{\binom{20}{3}}$$

Poll: pollev.com/hunter312

A.
$$\binom{20}{2}$$

$$\sqrt{B}. \quad \binom{19}{2}$$

$$\binom{20}{3}$$

$$C. \quad \frac{19^2}{\binom{20}{3}}$$

$$D. \quad \frac{19 \cdot 18}{\binom{20}{3}}$$
10

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function of where X specifies for any real number x, the probability that $X \leq x$.

$$F_X(x) = Pr(X \le x)$$

Go back to 2 coin clips, where X is the number of heads

$$F_{x}(1.5) = P_{y}(x \le 1.5) = \frac{3}{4}$$

$$\Pr(X = x) = \begin{cases} \frac{1}{4}, & x = 0 \\ \frac{1}{2}, & x = 1 \end{cases} \qquad F_X(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{4}, & 0 \le x < 1 \end{cases}$$

$$\Pr(X = x) = \begin{cases} \frac{1}{4}, & x = 1 \\ \frac{1}{4}, & x = 2 \end{cases} \qquad F_X(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{4}, & 0 \le x < 1 \\ \frac{3}{4}, & 1 \le x < 2 \\ 1, & 2 \le x \end{cases}$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$Pr(\omega)$	ω	$X(\omega)$
1/6	1, 2, 3	3
1/6	1 3, 2	1
1/6	2, 1,3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3,2,1	1

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Expectation (Idea)

What is the *expected* number of heads in 2 independent flips of a fair coin?

E[X] =
$$O \cdot P_r(X=0) + 1 \cdot P_r(x=1) + 2 \cdot P_r(X=2)$$

= $0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = 1$

equiv.

$$E[X] = X(HH)P_{Y}(HH) + X(HT)P_{Y}(HT) + X(TH)P_{Y}(TH) + X(TT)P_{Y}(TT)$$

$$= 2 \cdot 4 + 1 \cdot 4 + 1 \cdot 4 + 0 \cdot 4 = 1$$

Cumulative Disribution Function (CDF)

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of X is

$$E[X] = \sum_{\omega \in \Omega} X(\omega) \cdot Pr(\omega)$$

or equivalently

$$E[X] = \sum_{x \in X(\Omega)} x \cdot Pr(X = x)$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

Pr(ω)	ω	$X(\omega)$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

$$E[X] = O \cdot P_r(X=0) + 1 \cdot P_r(X=1) + 3 \cdot P_r(X=3)$$

$$= O \cdot \frac{1}{3} + 1 \cdot \frac{1}{2} + 3 \cdot \frac{1}{6} = 1$$

$$E[X] = \sum_{\omega \in \mathcal{N}} X(\omega) P_r(\omega)$$

$$= 3 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} = 1$$

Both ways compute same value!

Flip a Biased Coin Until Heads (Independent Flips)

Suppose a coin has probability p of being heads. Keep flipping independent flips until heads. Let X be the number of flips until heads. $\sum_{n=1}^{\infty} \frac{1}{n} \int_{\mathbb{R}^n} \frac{1}{n} \int_{\mathbb{R}^n} \frac{1}{n} dx$

$$\mathcal{L} = 2H, H, H$$

$$\times (\mathcal{L}) = EI, \infty)$$

$$\times (\omega)$$

What is:
$$Pr(X = 1) = P$$

What is:
$$Pr(X = 2) = (1-p)p$$

What is:
$$Pr(X = k) = (1-p)^{k-1}P$$

$$\{X = K\} = \{TTT....TH\}$$
 $P(TTT...TH) = (1-p)^{n-1}P$

Flip a Biased Coin Until Heads (Independent Flips)

Suppose a coin has probability p of being heads. Keep flipping independent flips until heads. Let X be the number of flips until heads.

What is E[X]?

$$E[X] = \sum_{k=1}^{\infty} k P_r(X=k) = \sum_{k=1}^{\infty} k (1-p)^{k-1} p = \dots = \frac{1}{p}$$

Didn't prove this, Pro is extra if curious

Extra: Use geometric series, for
$$0 < x < 1$$
, $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$
Take $\frac{1}{2}x$ of both sides, $\sum_{k=1}^{\infty} kx^k = \frac{1}{(1-x)^2}$. Looks a lot like fumula above!

$$E[x] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = p \cdot \frac{1}{(1-(1-p))^2} = \frac{p}{p^2} = \frac{1}{p}$$
Use $x = 1-p$