CSE 312
Foundations of Computing Il

Lecture 6: Conditional Probability and Bayes Theorem

PAULG ALLEN SCHOOL - Rachel Lin, Hunter Schafer

OF COMPUTER SCIENCE & ENGINEERING

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au
incorporating ideas from Alex Tsun’s and Anna Karlin’s slides for 312 20su and 20au
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Announcement

* PSet1due tonight

— Submit both coding and written portion on Gradescope.
— If working in a pair, remember to add your partner to your submissions!

* PSet 2 posted on website, due next Thursday
* No class or OH on Monday 1/18 (MLK Day)



Probability

' Definition. A sample space (1 is the set of

- all possible outcomes of an experiment.

Definition. An event £ C ()is a subset of

possible outcomes.

Probability Spacer (S,
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Examples:

* Single coin flip: 0 = {H, T}

 Two coinflips: Q ={HH,HT,TH,TT}
« Rollofadie: Q={1,2,3,4,5,6}

-1

Examples:
Getting at least one head in two coin flips:
E = {HH,HT,TH}

* Rolling an even number on a die:
E = {2,4,6}

Suwal(y Iyl F wnl prob spees
D& b { E!
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Axioms of Probability

Let () denote the sample spaceand E, F € () be events. Note
this is more general to any probability space (not just uniform)

Axiom 1 (Non-negativity): P(E) = 0

Axiom 2 (Normalization): P(()) = 1

Axiom 3 (Countable Additivity): If £ and F are mutually exclusive,
then P(E U F) = P(E) + P(F)

Corollary 1 (Complementation): P(E€) =1 — P(E)
Corollary 2 (Monotonicity): If E € F, P(E) < P(F)
Corollary 3 (Inclusion-Exclusion): P(E U F) = P(E) + P(F) — P(ENF)



Agenda

* Conditional Probability @
* Bayes Theorem
* Law of Total Probability

* Bayes Theorem + Law of Total Probability
* More Examples



Conditional Probability (Idea)

&f:. B. Oni® Crob Sprce : ‘
\\ " —_— = —
13 /
R
14
. .. A : .
What’s the probability that someone likes ice cream given they like donuts?
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Conditional Probability

Definition. The conditional probability of event A given an event B
 happened (assuming P(B) # 0) s

P(A N B)
P(AIB) = —5 s
W@VVObog-AgVMB/ ___________________________________________________________________________________________________________________
: . Use. botr Srmulss o fof !
An equivalent and useful formula is Wil probably Memone

P(ANB) = P(A|B)P(B)



Conditional Probability Examples

In the popular, social video game Among Us, you are either a crewmate
or an imposter. This game, you are an imposter. What is the probability

you will win the game given that you are imposter?

W =You win a game
| = You are the imposter in a game

P(W NI
P(I)

P(WII) =



Reversing Conditional Probability
Question: Does P(A|B) = P(B|A)?

No!
* Let A be the event you are wet
* Let B be the event you are swimming

P(A|B) =1
P(B|A) # 1



Example with Conditional Probability

Toss ared die and a blue die (both 6

sided and all outcomes equally
likely). What is P(B)? What is
P(B|A)?

() : Uniform
Die 2 P B ‘red die is 1’

b —
i 11000000 Q={1,..., 6}2
> 1 1® 00000 o A={(1,3),(2,2),(3,1)}
. |{®:0 0 0 0O :
. A\ B =L, 1) (1,6)3
'» ;Q,o 0O 0 0O
i A2 A ‘sum is 4’
| [ |®, 0N O O O

== > Die 1

€
P(B)= |, L 36

D (BIA) =

pollev.com/hunter312
P(b)  P(B|A)
a) 1/6 1/6
b) 1/6 1/3
c) 1/6 3/36
d) 1/9 1/3
181 _
§
P (ANB) Z?Lé_ _ 4
Prl(AD 3


https://pollev.com/hunter312

y S\ All sef & H/T oF
Gambler’s fallacy N=18TE Lergin. SO
Assume we toss 51 fair coins. l
Assume we have seen 50 coins, and they are all “tails”. % (w) =251

What are the odds the 515t coin is “heads””?

' ' : - TTT.-H?
A = first 50 coins are “tails” - {T TT..T, !
B = first 50 coins are “tails”, 51 coin is “heads” > ST77.. K §

515t coin is independent of
outcomes of first 50 tosses!

P(ANB) 1/2°

P(BlA) = P(A)  2/251

1
2

Gambler’s fallacy = Feels like it’s time for  heads”!?
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Agenda

Conditional Probability
Bayes Theorem @@
Law of Total Probability

Bayes Theorem + Law of Total Probability
More Examples
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Bayes Theorem “Top 10 Sotoudas, in probs /Stads
. Foundah'sn ¥ C{PPIOac"'éj in M-

A formula to let us “reverse’” the conditional.

Theorem. (Bayes Rule) For events A and B, where P(A4), P(B) > 0,

AP &
~ s :P(B}L(;I;( )

* P(A) is called the prior (our belief without knowing anything)
* P(A|B) is called the posterior (our belief after learning B)
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Bayes Theorem Proof

D(BIAPIAY « P (BN A) = P(ANB) = P-(AIB)PB)

D, (B) AP (A) = PIAIRYRB)
(e P (B)

P BIAY WA

.y
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Bayes Theorem Proof

By definition of conditional probability
P(AnB) =P(A|B)P(B)

Swapping A, B gives
P(BNnA) =P(B|A)P(A)

ButP(ANB) =P(BNA),so
P(A|B)P(B) = P(B|A)P(A)

Dividing both sides by P(B) gives
P(B|A)P(A)

P(AIB) = —— =
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Our First Machine Learning Task: Spam Filtering
S:‘—b Spam F: has UFRE‘EA

Subject: “FREE CLICK HERE™
Goal: P(SIF)

What is the probability this email is spam, given the subject contains “FREE”?
Some useful stats: B
— 10% of ham (i.e., not spam) emails contain the word “FREE” in the subject. R(F1S)= O.I
— 70% of spam emails contain the word “FREE” in the subject. B/F1S)= O- 1
— 80% of emails you receive are spam. P(S)=0-8

P(FYWsY = ©.7x O3
Dr(sU—q: PIFS T 737

compok PRI
vréblm't D Of)/}' l/t(,u)w (/LOU’ o wm FU
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Brain Break

Doing Bayesian
Data Analysis

A Tutorial with R, JAGS, and Stan

o
O
=
S
o5
- - s
Y 0

p(0|D) p(D|6) I plO) P(D)

John K. Kruschke @

17



Agenda

Conditional Probability

Bayes Theorem

Law of Total Probability 4

Bayes Theorem + Law of Total Probability

More Examples
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Partitions (Idea)

These events partition the sample space
1. They “cover” the whole space
2. They don’t overlap
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Partition

~ Definition. Non-empty events £, E>, ..., E,, partition the sample space () if
~ (Exhaustive)

n
E1UE2U.”UETL:U El:Q
=1

(Pairwise Mutually Exclusive)
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P

Law of Total Probability (Idea)

If we know £, £, ..., E,, partition (), what can we say about P (F)
@)

(Fy= P(FNE) +PFNE) ~ P(FASS D+ PLPME,)
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Law of Total Probability (LTP)

_______________________________________________________________________________________________________________________________________________________________________________

' Definition. If events £, E,, ..., E,, partition the sample space (), then for any event F |

P(F)=P(FNE)+ ..+ P(FNE,) = Z[p(p R E-ﬂ
=1

______________________________________________________________________________________________________________________________________________________________________________

Using the definition of conditional probability P(F N E) = P(F|E)P(E)
We can get the alternate form of this that show

P = Y PrIEIPE]
=1
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Another Contrived Example

Alice has two pockets:
* Left pocket: Two red balls, two green balls
* Right pocket: One red ball, two green balls.

Alice picks a random ball from a random pocket.
[Both pockets equally likely, each ball equally likely.]

P (Red)
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L ,

L q(m%%/% RR * - Left pocket: Two red, two green

?«:}2 Right < * Right pocket: One red, two green. |

/ F(GIQ,ZJVH'> ~~~~~~~~ RS e ;

13 =P(R|[R)and2/3=P(G |R)

\ w1 LR 7& /3 __________ ( _____ | _____ ) ______________ / 55 ( ______ | ) _____ -
- 1/2 Left

Lef4D
PoiLgyy 2 LG

P(R) = P(R N Left) + P(R N Right)  (Law of total probability)
= P(Left) X P(R|Left) + P(Right) x P(R|Right)
1 1 1 1 1 1 5

=—X—F+=—X—=—+-—=—
2 2+2 3 4+6 12 24



Agenda

Conditional Probability
Bayes Theorem
Law of Total Probability

Bayes Theorem + Law of Total Probability @
More Examples
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Our First Machine Learning Task: Spam Filtering ‘,5

S =15 spam, F: has FREE g S >
Subject: “FREE CLICK HERE” - !
Gool: PSIFY S,3 parkd i

What is the probability this email is spam, given the subject contains “FREE”?
Some useful stats: _
— 10% of ham (i.e., not spam) emails contain the word “FREE” in the subject. Pr (FI5 )= 0.1
— 70% of spam emails contain the word “FREE” in the subject. Pr(F|5):= O-7
— 80% of emails you receive are spam. P($)= 0. % P(5)= 1-0.8=0.2

P(FINP(Y - PRSP 0.9x 08
Psis)= P(F) WFESSHPFEIP3)  0Ix0.8+ O1x0. 2

~ 0,966
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Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let £, £, ..., E,, be a partition of the
sample space, and F' and event. Then,

P(F|E1)P(E1) P(FlEl)P(El)
P(F) = P(FIEDP(E;)

Simple Partition: In particular, if £ is an event with non-zero
probability, then

P(E|F) =

P(E1|F) =

P(F|E)P(E)
P(F|E)P(E) + P(F|E€)P(E©)

E/ EC pa./-l{-l'\c)q
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Agenda

Conditional Probability
Bayes Theorem
Law of Total Probability

Bayes Theorem + Law of Total Probability
More Examples @
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Example - Zika Testing

Zika fever

OVERVIEW SYMPTOMS SPECIALISTS

Fever
Rash
Joint pain
Red eyes

Spread throu%t;
mosauito hiteource

A disease caused by Zika virus that's spread through
mosquito bites.

This example and following slides are from Lisa Yan (Stanford).

Usually no or mild symptoms (rash); sometimes
severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns
“positive”, what is the likelihood that you
actually have the disease?

* Tests for diseases are rarely 100% accurate.
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. . 008 / -
Example - Zika Testing z z’ T~ T
' — - OgN_ 1 00 > 2,7 %
2 = have, Za, Tzl pesitive 2 /\5 5 ¥

Suppose we know the following Zika stats
— Atestis 98% effective at detecting Zika (“true positive”) P(T 12)=0-98
— However, the test may yield a “false positive” 1% of the time P(T12)=0.0!
— 0.5% of the US population has Zika. P(2)=0.005

What is the probability you have Zika (event 2) if you test positive (event T).

Gool P(Z\T)

x (O.60S
PITIDPD  PTIHUD ) 0.498 x O 5
P(’Z\T = P(T) - p(m)P(2)+P(ni3P(€) D.98x0.00S + ©

- 0.33
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Example - Zika Testing

Suppose we know the following Zika stats
— Atestis 98% effective at detecting Zika (“true positive”)
— However, the test may yield a “false positive” 1% of the time
— 0.5% of the US population has Zika.

What is the probability you have Zika (event 2) if you test positive (event T).

Suppose we had 1000 people:

H
TIL (% . . s
: * 5 have Zika and test positive
T * 10 do not have Zika and test positive
> _1 0.33
5+10 3

Demo 31



https://web.stanford.edu/class/cs109/demos/medicalBayes.html

Philosophy — Updating Beliefs
While it’s not 98% that you have the disease, your beliefs changed drastically

Z = you have Zika
T = you test positive for Zika

| now have a 33%
chance of having Zika
after the test!!!

| have a 0.5% chance
of having Zika

Prior: P(2) Posterior: P(Z|T)

32



Example - Zika Testing

Suppose we know the following Zika stats
— Atestis 98% effective at detecting Zika (“true positive”)
— However, the test may yield a “false positive” 1% of the time
— 0.5% of the US population has Zika.

What is the probability you test negative (event T) if you have Zika (event Z)?

p(T1z)= | - PM2) = 0.02

LTP

Brook- .

T oTigy . B, PrANBY | B(B)

P(AIBYPIAIB) = P(3) PE®Y P(BD
A/;‘ ?,L/‘H-:MJL
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Conditional Probability Define a Probability Space

The probability conditioned on A follows the same properties as
(unconditional) probability.

Example. P(B¢|A) =1 — P(B|A)

Formally. ((), IP) is a probability space + P(A) > 0

‘ (A, P(- |A)) is a probability space
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