CSE 312 Review

Thursday, March 11, 2021 11:59 PM

Probability & Statistics with Applications to Computing
Key Definitions and Theorems

1 Combinatorial Theory
1.1 So You Think You Can Count?

The Sum Rule: If an cxperiment can cither end up being one of N ontcomes, or onc of M outcomes (where there is no
overlap), then the total munber of possible outcomes is: N + M.

The Produect Rule: If an experiment has N) outcomes for the first stage, N, outcomes for the second stage, ..., and N,
outcomes for the m'™ stage, then the total number of outcomes of the experiment is Ny x Ny -« Nen = |27 M

Permutation: The number of orderings of N distinct objects is Nl = N- (N —1)- (N —-2)-...3-2-1.
Complementary Counting: Let I be a (finite) universal set, and S a subset of interest. Then, | S'|=| U | — [U\ S|

1.2 More Counting

k-Permutations: If we want to pick (order matters) only & out of n distinet objects, the number of ways to do so is:
Pink)=n-(n—-1)-(n=2) .- (n—k+1) = 58

h-Combinations/Binomial Coefficients: If we want to choose (order doesn’t matter) only k out of n distinct objects,
the number of ways to do so is:

N\ Pk !
C(n, k) (:) _(;:1—) m

Multinomial Coefficients: If we have k distinct types of objects (n total), with ng of the first type, ny of the second, ...,
and 1y, of the k-th, then the number of arrangements possible is

n . n!
U1, My vony T nyInal. !

Stars and Bars/Divider Method: The number of ways to distribute n indistinguishable balls into k distingnishable bins
is
n+(k—-10\ (n+E-1)
k=1 n

Binomial Theorem: Let .y € R and n € N a positive integer. Then: (z+ )" = 35 _, (7)a*y"*.

1.3 No More Counting Please

Principle of Inclusion-Exclusion (PIE):

2 events: [AU B = [A] + [B| = |[An B8]

Jevents: [AUBUC] = |A|+ [B|+|C| = |ANB| - |ANC| - |BNC| + |[AnBNC]|
k events: singles - doubles + triples - quads + ...

Pigeonhole Principle: If there are n pigeons we want to put into k holes (where n > k), then at least one pigeonhole must
contain at least 2 (or to be precise. [n/k]) pigeons.

Combinatorial Proofs: To prove two quantitics arc cqual, you can come up with a combinatorial situation, and show that
both in fact count the same thing, and hence must be equal.

2 Discrete Probability

2.1 Discrete Probability

Key Probability Definitions: The sample space is the set 2 of all possible outcomes of an experiment. An event is
any subset £ C 1 Events ' and F are mutually exclusive if £ F = (I

Axioms of Probability & Consequences:

1. (Axiom: Nonnegativity) For any event E, F(E) = (.
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2. (Axiom: Normalization) #{£1) — 1.
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2. (Axiom: Normalization) ¥ (Q) — 1.

3. (Axiom: Countable Additivity) If F and F arc muinally exclusive, then P{EU F) = F(E) + F(F).
1. (Corollary: Complementation) F(E®) =1 —F(E)

2. (Corollary: Monotonicity) It E © F. then P(E) < F(F]

3. (Corollary: Inclusion-Exclusion) FIEUF)=F(E|+F(F)-F(EF)

Equally Likely Outcomes: If Q is a sample space such that each of the unique outcome elements in £ are equally likely,
then for any event £ C (: B(F) = |E|/|Q|.

2.2 Conditional Probability

com TR S > p(ansY= (AIB)PD) > AISAIRA)
Bayes Theoreu: P (4| 5) =~ L F () 2

Partition: Non-empty events [, ..., E,, partition the sample space £ if they are both:
e (Exhaustive) By UE,U---UE, = |J_, E; = Q (they cover the entire sample space).
s (Pairwise Mutually Exclusive) For all i # j, E; (1 E; = {0 ( none of them overlap)

Note that for any event E, E and EC always form a partition of €.
Law of Total Probability (LTP): If events E,,.... E, partition €, then for any event F:

P(F) = ;P(F N Eg) = > P(F| E)P(E)

i=1

Bayes Theorem with LTP: Let events Ey, ..., F, partition the sample space {1, and let F' be another event. Then:

P(F | By)P(E;)
i B(F [ E)E(E)

P(E | F)=

2.3 Independence
Chain Rule: Let Ay,..., A, be events with nonzero probabilities. Then:

P(A1...,An) =P(A1) P42 | 4) P (A4z | A1Az) - P(An | A1,.., An1)

Independence: A and B are independent if any of the following equivalent statements hold:

1. P(A | B) = P(A)
2. P(B| A) =P (B) P(A,B)-'- p(AnB)
3. P(A.B)=PA)EB) &

Mutual Independence: We say n cvents Ay, As, ..., A, are (mutually) independent if, for any subsct I C [n] =

{1,2,...,n}, we have
P (ﬂ m) =[P

ief ief

This equation is actually representing 2™ equations since there are 2" subsets of [n].

Conditional Independence: 4 and B are conditionally independent given an event C if any of the following
equivalent statements hold:

1. P(A| B,C)=P(A|C)
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2. P(B|A,C)=P(B|C)
3. P(A,B|C)=P(A|C)P(B|C)

3 Discrete Random Variables

21 Niecrrata Randanm Variahlac Racire



3 Discrete Random Variables

3.1 Discrete Random Variables Basics

Random Variable (RV): A random variable (RV) X is a numeric funetion of the ontecome A" : £ 3 . The sct of possible

values X can take on is its range/support. denoted (1y. X{JZ,S
If 25 is finite or countable infinite (typically integers or a subset), X is a discrete RV. Else if 1y is uncountably large (the

size of real munbers), X is a continuous RV.

Probability Mass Function (PMF): For a discrete RV X, assigns probabilities to values in its range. That is px : Qx —
[0 1] where: px (k) = P(X = k).
——— R

Expectation: The expectation of a discrete RV X is: E[X] =37, o k- px(k).

3.2 More on Expectation

Linearity of Expectation (LoE): For any random variables XY [possibly dependent):

E[<*J#EL °

E[aX +bY +¢| = aE[X] + bE[Y] + ¢

Law of the Unconscious Statistician (LOTUS): For a discrete RV X and function ¢, E[g(X)] =30, g(b) - px (b).
3.3 Variance

Linearity of Expectation with Indicators: If asked only about the expectation of a RV X which is some sort of “count”
{and not 1ts PAF), then you may be able to write X as the sum of possibly dependent indicator RVs X...., X,,, and apply
LoE, where for an indicator RV X;. E[X;|=1-P(X;=1)+0.-P(X; =0) =P (X; = 1).

Variance: Vor (X) = E [(X - E[X])?] =E[X?] - E[X]*. v
Standard Deviation (SD): ox = /Var(X). I‘F X1y,

Property of Variance: Var (aX +b) = aVar (X). Vw (K + Y ) Ve {K) Ve (Y)
3.4 Zoo of Discrete Random Variables Part 1

Independence: Random variables X and Y are independent, denoted X' 1 ¥, if for all © € 0y and all y € Oy
Pix=znNY =g =PX=mp.FP(Y =y).

Independent and Identically Distributed (iid): We say X;,.... X, are said to be independent and identically
distributed (iid) if all the .X;'s are independent of each other, and have the same distribution (PMF for discrete RVs, or
CDF for continuous RVs).

Variance Adds for Independent RVs: If X | Y, then Var (X +Y) = Var (X) 4+ Var (Y).

Bernoulli Process: A Bernoulli process with parameter p is a sequence of independent coin flips Xy, X5, X3, ... where
P (head) = p. If flip i is heads, then we encode X; = 1; otherwise, X; = 0.

Bernoulli/Indicator Random Variable: X ~ Bernoulli(p) (Ber(p) for short) iff X has PMF:

k=1

px{k]={lf’p_ i

E[X]| = p aud Var (X) = p(1 — p). An example of a Bernoulli/indicator RV is one flip of a coin with F(head) = p. By a
clever trick, we can write
px(®)=p1-p)'", k=01

Binomial Random Variable: X ~ Binomial(n,p) (Bin(n,p) for short) iff X has PMF

py (k) = G:)p* 1-p)"*, keQx={0,1...,n}

E[X] = np and Var (X) = np(1 — p). X is the sum of n iid Ber(p) random variables. An example of a Binomial RV is the
number of heads in n independent flips of a coin with P (head) = p. Note that Bin(1,p) = Ber(p). As n — oo and p —
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0,with np = A, then Bin(n,p) — Poi(A). If X;,..., X, are independent Binomial RV’s, where X; ~ Bin(N;,p), then
X=X1+...+ X, ~Bin(N, +... + N,,p).
3.5 Zoo of Discrete Random Variables Part 11

Uniform Random Variable (Discrete): X ~ Uniform(a,b) (Unif(a, b) for short), for integers a < b, itf X has PMF:

1
Px [!"} = m, kEQX = {ﬂ-.ﬂ-‘f' l.h}
E[X] = % and Var (X) = Mf‘z-'izl This represents each integer in [a,b] to be equally likely. For example, a single roll
of a fair die is Unif(1, 6).

Geometric Random Variable: X ~ Geowetric(p) (Geo(p) for short) iff X has PMF:
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of a fair die is Unif(1, 6).
Geometric Random Variable: X ~ Geowetric(p) (Geo(p) for short) iff X has PMF:
px (B =(1—p'p, keQx=1{1,23,..}

E[X] =1 and Var (X) = AT example of a Geometric RV is the number of independent coin flips up to and including
the first head, where P (head) = p.

Negative Binomial Random Variable: X ~ NegativeBinomial(r,p) (NegBin(r, p) for short) iff X has PLF:

k-1

px (k) = (r l)p’ 1 -, keQy= {ror+1,7+2,...}

E[X]= F—'"} and Var (X') = L:“}'ﬂ X is the sum of r iid Geo(p) random variables. An example of a Negative Binomial RV is
the number of independent coin flips up to and including the r-th head, where P (head) = p. If X;,..., X, are independent

Negative Binomial RV’s, where X; ~ NegBin(r;, p), then X = X; - ...+ X,, ~ NegBin(r; +... +7r.,p).
3.6 Zoo of Discrete Random Variables Part IIT

Poisson Random Variable: X ~ Poisson(A) (Poi(A) for short) iff X has PMF:

k

px () = e

o kefx={0,12..}

E[X] = X and Var(X) = A An example of a Poisson RV is the number of people born during a particular minute,
where A is the average birth rate per mimte. If Xy, ..., X, arc independent Poisson RV's, where X; ~ Poi();), then
X=X:+...+ X, ~Poil\ 4...+ A,).

Hypergeometric Random Variable: X ~ HyperGeometric(V, K, n) (HypGeo(N, K, n) for short) iff X has PMF:

ol

)

E[X] = n‘% and Var (X) = HW. This represents the number of successes drawn, when n items are drawn from
a bag with N items (K of which are successes, and N — K failures) without replacement. If we did this with replacement,
[i%

then this scenario would be represented as Bin (n. N’)‘

px (k)= , ke Qx ={max{0,n+ K- N}, ...,mn{K,n}}

4 Continuous Random Variables

4.1 Continuous Random Variables Basics

Probability Density Function (PDF): The probability density function (PDF) of a continuous RV X is the function
fx B — R, such that the following properties hold:

o fx(z)=0foral zeR _g‘x(;) ;’ '?//X—: 2) = O

T =1

e ee—

e Pla< X <b) = j:fx{w) dw /(
== b

Cumulative Distribution Punction (CDF): The cumulative distribution function (CDF) of ANY random variable
(discrete or continuous) is defined to be the function Fy : B — R with Fy(¢) = P (X < ¢). If X is a continuous RV. we have:

»y (e)= P{/Xf‘a)
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o Fx(t)=P(X <t)= fix fx(w)dwforallt € R

o Lpy(u) = fx(u)
el S A

Univariate: Discrete to Continuous:

Discrete Continuous
PMF/PDF px(z}=P(X =1x) fx(@z) #P(X =2)=0 e
CDF Fy (z) = 3 1<, Px(E) Fx(z)=[" fx(t)at
Normalization Farx(pr=1 Lo fx (@) de =1
Expectation/LOTUS | E[g(X) =) g(z)px(z) | E[g(X)] = [T g(z)fx (z) dx

4.2  Zoo of Continuous RVs
Uniform Random Variable (Continuous): X ~ Uniform(a,b) (Unif(a,b) for short) iff X has PDF:

= ifxeQyx=]ab
(e |y X ’
Fx () { 0 otherwise
E[X] = % and Var (X) = L]*;L' This represents each real number from [a, b] to be equally likely. Do NOT confuse this
with its discrete counternart!



RN l 0 otherwise

E[X] = % and Var (X) = L]g)—_ This represents each real number Irom [a,b] to be equally likely. Do NOT confuse this
with its discrete counterpart!

Exponential Random Variable: X ~ Exponential(A) (Exp(A) for short) il X has PDE:

o Ae™™ ifzeQx =[0,00)
fx (2) = { 0 otherwise

E[X] = } and Var (X) = % Fy (z) = 1 — e ** for & > 0. The exponential RV is the continuous analog of the geometric
RV: it represents the waiting time to the next event, where A > 0 is the average number of events per unit time. Note that
the exponential measures how much time passes until the next event (any real number, continuous), whereas the Poisson
measures how many events occur in a unit of time (nonnegative integer, discrete). The exponential RV is also memoryless:

forany s,t >0, P(X >s+t| X >s)=P(X >1)

Gamma Random Variables ~ Gamma(r. A) (Gam(r, A} for short) iff X has PDF:

E[X] = £ and Var(X) = . X is the sum of r ii es. In the above PDF. for positive integers r,
T(r) = (r—1)! (a normalizing constant). mple of a Gamma RV is the waitlimr=saag until the r-th event in the Poisson
process. If X,..., X, are indep amma RV’s, where X; ~ Gam(r;, A), then X = X, +orm==d, ~ Gam(ry+...4+rn, A).

It also serves as a conjugate prior for A in the Poisson and Exponential distributions.

4.3 The Normal/Gaussian Random Variable
Normal (Gaussian, “bell curve”) Random Variable: X ~ N{u, o?) iff X has PDF:

te—p)?
€ 3 1'3“ , refly =R

fx (z) =

a2

E[X] = p and Var(X) = o2, The “standard normal” random variable is typically denoted Z and has mean 0 and variance 1:
if X ~ N (g, 0%), then Z = Y—;E ~ N(0,1). The CDF has no closed form, but we denote the CDF of the standard normal as
$(z) = Fz (z) =P(Z = z). Note from symmetry of the probability density funetion about z = 0 that: ®(—z) =1 — ®(z).

Closure of the Normal Under Scale and Shift: If X ~ N (g, 0%), then aX + b ~ M{ag + b,a’c”). In particular, we
can always scale/shift to get the standard Normal: Xf:g ~ N(0,1).

Closure of the Normal Under Addition: If X ~ AN (uy. 0_2,{} and Y ~ N(uy.oy.) are independent, then
aX +bY + ¢~ N(apx + buy + ¢, 0% + bai)
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4.4 Transforming Continuous RVs

Steps to compute PDPNof V' = g(X) from X (via CDF): Suppose X is a continuous RV.

1. Write down the range QxN2DF [x. and CDF Fyx.

ity €y
otherwise

o) = { £200)

Explicit Formula to compute PDF of Y = g(
(¥7. ..., ¥5,) be continuous random vectors (each ponent is a continuous rv)
and Y = g(X) where g : 0x — Qy is invertibl’and differentiable. with differenti

)

Case): Let X = (X;....,.X,.), Y =
ith the same dimension n (so Oy, Oy C B"),
le inverse X = g~ (y) = h(y). Then,

fy(y) = fx(h(y)) det (

ahi

where ( By

) € R"*" is the Jafobian matrix of partial derivatives of h, with

£ AR AlhixY.



A S |
where (%{y}) € R™" is the A matrix of partial derivatives of h, with

5 Multiple Random Variables

5.1 Joint Discrete Distributions

Cartesian Product of Sets: The Cartesian product of sets A and B is denoted: A x B = {(a,b):a € A,b € B}.

Joint PMFs: Let X, 1 be discrete random variables. The joint PMF of X and Y is:
pxylab) =P(X =aY =¥
The joint range is the set of pairs (¢, d) that have nonzero probability:

Qxy ={le.d): pxyle,d) =0} CQx x Dy

Note that the probabilities in the table must sum to 1:

Z pxyis.t) =1

[s:)ER X

Further, note that if g : B? — R is a function, then LOTUS extends to the multidimensional case:

ElfV= > >

gl ylpxyir,u)

ziefly yEy

Marginal PMFs: Let XY be discrete random variables. The

Independence (DRVs): Discrete RVs X, Y are independent,
px()py(y).

marginal PMF of X is: pyla) — Zbeﬂy pxyl(a.b).

written X L Y, ifforallx € Qx and y € Qy: px y(x,y) =

Variance Adds for Independent RVs: If X | Y, then: Var (X + V) = Var (X) + Var (V).

Pr(A:a, B=b)
L r(Aza pr(-'-b)
in&:P P(A ) ¢

Ly BlAalBb(B=b)

‘/3

e —

‘/c

—
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—> 5.2 Joint Continuous Distributions

Joint PDFs: Let X,Y be continuous random variables. The joint PDF of X and Y is:
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5.2 Joint Continuous Distributions

Joint PDFs: Let X, Y be continuous random variables. The joint PDF of X and VY is:

fxyla.b) =0
The joint range is the set of pairs (e, d) that have nonzero density:
Qxy ={(c,d): fxy(c,d) >0} CQx x Dy

Note that the double integral over all values must be 1:

f / Fx.v(u,v)dude = 1
—00 S =20

Further, note that if g : B2 — R is a function, then LOTUS extends to the multidimensional case:
B, Y) = [ [ o 0ser(snasae
o0 oo .

The joint PDF must satisfy the following (similar to univariate PDFs):
b pd
PlasX<be<sV <d) =f f Fxy(z,y)dyds

Marginal PDFs: Let XY be continuous random variables. The marginal PDF of X is: fy(z) = f_xm Fxv(x, y)dy.

Independence of Continuous Random Variables: Continuous RVs X, Y are independent, written X L Y, if for all
z € Qx and y € Qy, fxy(z,y) = fx(@)fr(y).
5.3 Conditional Distributions

Conditional PMFs and PDFs: If X Y are discrete, the conditional PMF of X given Y is:

- = - B B - .y Pxyla.d) Pr|x”’ | a)px(a)
P(X.KIV- ‘3)- PXY{”‘IF’}_]P{'Y_ﬂly _h)_ ,L'Y(b) s m-(b}

Similarly for continuous RVs, but with f's instead of p’s (PDFs instead of PMFs).

Conditional Expectation: If X is discrete (and Y is cither discrete or continnons), then we define the conditional expec-
tation of g(.X) given (the event that) ¥ = y as:

Elg(X)|Y=yl= Y g@@pxiy(=|y) = Z( 300 W [)(: o IY'?)

— zellx

xexln)
If X is continuous (and Y is either discrete or continuous), then
B 1Y =4l = [ s@ixr(z | pis

Notice that these sums and integrals are over x (not y), since E [g(X) | ¥ = y] is a function of y.

Law of Total Expectation (LTE): Let X, Y be jointly distributed random variables.
If ¥ is discrete (and X is either discrete or continuous), then:

Elg(X)] = Y Elg(X) Y = ylpy(y)
vEly

If ¥ is continuous (and X is either discrete or continuous), then
2lo(x)] = [ Elo(X) | Y =] i@y
—o0

Basically, for E [g(X)], we take a weighted average of E[g(X) | ¥ = y] over all possible values of y.
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- Multivariate: Discrete to Continuous:

Discrete Continuous
Joint Dist Py @y =P (X =5,Y =) Ty @ ZP(X =2, =3)
Joint CDF Fxy (2,4) = Y 1cp ey Px.y (L 5) Fxy (z,y) = [T J7 Fxy (¢ s)dsdt
Normalization T Y PX.Y (z,y)=1 j‘m f"; fxy (z,y)dedy =1
Marginal Dist px(x) =), pxy(z.y) Sx(@) = |2 Fxy(z,y)dy
Expectation Elg(X.V)[=3, , 9@ vpxy(z.y) | E[g(X. V)= [ [ g(z,y)fx,y (z. y)dedy
Conditional Dist ;.-1X|1,-(:r|y} = —————p";:{(:]’m Ixy (alap)i= ____I_\}::t\;iyl
Conditional Exp | E[X|Y =y| =3 Tpxy (*ly) E[X]Y =3] = J’ o TIxy (ly)dr
Independence Yo,y px,v (2, y) = px(2)py (y) Vo,y, T (5r9) = Ix @)y ()

5.4 Covariance and Correlation
Covariance: The covariance of X and YV is:
Cov(X,Y)

=E[(X-EX)(Y -E[Y])] =E —-E[X]E[Y]

Covariance satisfies the followiMsproperties:

1. f X 1Y, then Cov(X,Y)
2. Cov(X,X) = Var(X). (Just plug in ¥ = X
3. Cov(X,Y) = Cov(Y, X). (Multiplication i
doesn’t and shouldit

4. Cov (X +¢,Y) = Cov(X,Y). (Shiftiy
b-Cov (Y, Z). This can be easily

affect the covariance).

5. Cov(uX +0Y,Z) =a-Cov(X)
(aX +bY)Z = a(XZ) + b(}

6. Var(X +Y) =Var(X

iembered like the distributive property of scalars

Var (YY) + 2Cov (X, Y'), and hence if X | Y, then Va

% Cw(BL X Pl V) = TR S GoulXy ).
multiplication of sums ((a + b+ c)(d + e) = ad + ae + bd + be + cd + ce).

+Y) =Var(X) + Var(Y).

That is covariance works like FOIL (first, outer, inner, last) for

(Pearson) Correlation: The (Pearson) correlation of X and YV is: p(X,Y) =

Var X4/ Var(¥') :
malized version of covariance. Most notably,
d then the sign of p is the same as that of a.

It is always true that —1 < p(. < 1. That is, correlation is just
pX,Y)==lifandonly if Y = aX - - some constants a,b €

Variance of Sums of RVs: Let X,..... X, ependent or not). Then,

+2> " Cov(Xy, X;)

5.5 Convolution

Law of Total Probability for Random Variables:
Discrete version: If X, Y are discrete:

px(x) ZYJX vz, y) = Z?ﬁxn (@ | y)oy(y
Continuous version: If X, ¥ are continuous:

tx@ = [ rey@ad= [ favie | b @

Convolution: Let X, Y be independent RVs, and Z = X + Y.
Disercte version: If X, Y arc dis

2te:

pz(2) = Y px(@)p

rEQx
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Continuous version: If X, ¥ are continuo
1@ = [ fx@fy(c - o)
TEMRX

5.6 Moment Generating Functions
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Continuous version: If X, ¥ are continuoug’

Jz(z) = ‘[en fx(z)fy(z — z)d2

5.6 Moment Generating Functions

Moments: Let X be a random variable and ¢ € IR a scalar. Then: The k-th moment of X is £ [X“'] and the k-th moment
of X (about ¢) is: E [(X — ¢)*].

Moment Generating Functions ( Fs): The moment generating fung#fion (MGF) of X is a function of a dumnmy

variable ¢ (use LOTUS to compute this): Mdx(f) = E [e:‘x].

Properties and Uniq of Moment §enerating Functions: #or a function [ : R — R, we will denote f\")(z) to
be the n-th derivative of f(z). Let X,Y be ind®gendent random varjbles, and a,b € R be scalars. Then MGFs satisfy the
following propertics:

1. M%(0) = E[X], M%(0) = E [X?], and in generM = E[X"]. This is why we call Mx a moment generating
function, as we can use it to generate the moments

2. Maxis(t) = e Mx (at).
3. If X LY, then Mx4v(t) = Mx(t) My (t).

(b) fx(z)= fy(z) forall z €
(¢) Fx(z) = Fy(z2) for all 2
that M (t) = My (t) for all t € (—¢,2).

That is My uniquely identifies a distribution. just like PDFs/PMFs or CDFs do.

(d) Thereisane >0«

5.7 Limit Theorems

The Sample Mcean + Properties: Let Xy, Xa,...,. X, be a sequence of iid RVs with mean g and variance o2. The
sample mean is: X, = LY X, Parther, E [X,] = p and Var (X,,) = 0?/n

The Law of Large Numbers (LLN): Let X, ..., X, be iid RVs with the same mean g As n > oo, the sample mean
X, converges to the true mean p.

The Central Limit Theorem (CLT): Let Xi,...X, be a sequence of iid RVs with mean g and (finite) variance 2.

Then as n — o<,
_ a2
X-n _*N (P‘n ?)

The mean or variance are not a surprise; the importance of the CLT is, regardless of the distribution of X;'s, the sample
mean approaches a Normal distribution as n — oo.

The Continuity Correction: When approximating an integer-valued (discrete) random variable X with a continuous one
Y (such as in the CLT). if asked to find a IP (a < X < b) for integers a < b, vou should use P(a — 0.5 <Y < b+ 0.5) so that
the width of the interval being integrated is the same as the number of terms summed over (b —a + 1).

5.8 The Multinomial Distribution

Random Vectors (}\VTR.R}: Let X,,...,X,, be random variables. We say X = (X;...., X,)" is a random vector.
Expectation is defined pointwise: E[X] = (E[X,],...,E[X,])T.

Covariance Matrices: Wie covariance matrix of a random vector X € B with E [X] = p is the matrix ¥ = Var(X) =
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Cov (X)) whose entries £,; = Cov (X, X;). The §

Cov (X, X5) Cov (X1, X,)

oV (-X-Q-. f‘—n)



L=varia) =

A) =0 LA —

1) Cov (X1, X3)
g, X1)  Var(Xy)

A —p) | =5n|AA | —pp
Cov (X1, X,,)
ov (X, X,)

ov (‘X:ru"(l) COV(X;rlsX2)

Notice that the covariance 1 n the diagonal.

The Multinomial Distpfbution: Suppose there are r outcomes. with probabili
that 37 p; = 1. Suppbse we have n independent trials, and let Y = (¥1,Y2,...,Y})
Then, we say Y ~ MYt (n, p):

The juint PMF of Y is:

trix is symmetric (3;; = £;;), and has variance

s p = (p1.p2, ..., Pr) respectively, such
the rvtr of counts of each outcome.

Py, vk k) = (kl A k ) H;u:-“", k1, .ky = 0 and Zk,- =n
L

i=1

Notice that each ¥; is margi
Then, we can specify the entir

1ly Bin(n, p;). Hence, E[¥;] = np; and Var,

i) = npi(1 = pi).
) (1—pi)
1ean vector E[Y] and covariance matpfi:

E[Y]=np=\ : o1 — p;) Cov (Y3,Y;) = —npip;

The Multivariate Hypergeometric (MVH s don:  Supposce there are v different colors of balls in a bag,
having K = (K, ..., K,) balls of each color, 1 € ¢ < Let N = z;zl K; be the total number of balls in the bag. and suppose
we draw n without replacement. Let Y = (Y3, ..., Y « the rvir such that Y; is the mumber of balls of color @ we drew. We

ZWJi; for all 1 < i < r and Zkr =n

i=1
Notice that each Y; is marginally Hypfieo(N, I(;, n), so E[Y;] = 71%,‘- ar
Nar(Tg) et T e vector B[¥] aud covasi trix ave:
r(Yi) =n— v N1/ e mean vector E and covariance 1 ix are:
K : - Ki N-K; N-n . KiK; N—n
]ElYI_”'F: K Var(],—_}—uﬁ-T-N_l COUf '}jjz_nFTf'N—l

5.9 The Multivariate Normal Distribution

Properties of Expectation and Variance Hold for RVTRs: Let X be an n-dimensional RVTR, A € R™*"™ be a con-
stant matrix, b € R™ be a constant “ector. Then: E[AX + b] = AE[X] + b and Var (AX + b) = AVar (X) AT,

=

A random vector X = (X
positive-definite) covaris

The Multivariate Normal Distributy
with mean vector p € R" and (symmetric a
has the following joint PDF:

... X.) has a multivariate Normal distribution
ce matrix ¥ € R**" written X ~ N, (p, X), if it

fx(@) = exp 2 TS (@~ m) . zeRr

1
CEREE
Additionally, let us recall that for any RiVs X and Y
the converse also holds: Cov (G, X;) =0 —= X, L.
5.10 Order Statistics

viX,Y)=0 X =(Xy,..., X,.) is Multivariate Normal,

Order Statistics: Suppose Y], .... ¥, arefid continuous random variables with common PDF fy- and common CDF Fy-.
We sort the ¥i's such that Y., = Y{1) <#(g) < ... < Y») = Ve,
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variables, the probability that any two are equal is 0.
‘he ith order statistic, i.e. the ith smallest in a sample of

Notice that we can’t have equality becau gth continuous ran
Notice that each Y{;) is a random variable as welt
size n. The density function of each Yi; is

n

o ) = ! R () ING W) fr ), € Oy

i—1,1,n—

6 Concentration Inequalities

6.1 Markov and Chebyshev Inequalities

Markov’s Inequality: Let X > 0 be a non-negative RV, and let & = 0. Then: P(X = k) < %



6.1 DMarkov and Chebyshev Inequalities

Markov’s Inequality: Let X = () be a non-negative RV, and let k > 0. Then: F(X = k) < E-E-(-X-]

Chebyshev’s Inequality: Let X be any RV with expected value ¢ = E[X] and finite variance Var (X'). Then, for any real
Var (X))
a?

number @ > 0. Then, P(|X — u| = a) <
6.2 The Chernoff Bound
Chernoff Bound for Binomial: Let X ~ Bin(n,p) and let p = E[X]. For any 0 < 4 < 1:

]P(Xz(l—d)a}iexp(—%:) and P(XS(]—J)p)gexp(_?)

6.3 Even More Inequalities
The Union Bound: Let Ey, Fs. ..., E, be a collection of events. Then: P (U], £;) < 31, P(E;).
A similar statement also holds if the number of events is countably infinite.

Convex Sets: A set S C R" is a convex set il for any aq,...,2, € 5

and p, .., pm = 0 such that 317, p; = 1,

9 (Z Péff?e) <Y piglai)
i=1 i=1

Jensen’s Inequality: Let X be any RV, and g : R — & be convex. Then, g(

Hoeffding’s Inequality: Let X, .. X, be in
X, be their sample mean. Then,

) < E[g(X)].
‘here each X; is bounded: a; < X; < b; and let

ndent random variabl

e ( 2nt? )
i (b —ai)?

P([Xn-E[Xa]| 2

7 Statistical Estimation

7.1 Maximum Likelihood Estimation

Realization / Sample: A realization/sample x of a random variable X is the value that is actually observed (will always
be in {1x).
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Likelihood: Let x = (1,...,x,) be iid realizations from PMFE px (! | ¢) (if X is discrele), or rom density fx(t | ¥) (if X is
continuous), where ) is a parameter (or vector of parameters). We define the likelihood of x given # to be the “probability”
of observing x if the true parameter is #. The log-likelihood is just the log of the likelihood, which is typically easier to
optimize.

If X is discrete,

L(x|0) =[] px(a: | 0) InL(x|0) = npx(z: | 0)
| i=1

If X is continuous,

L(x|8) =] fx(=i | 9) InL(x|0) = Infx(z;|6)
i=1 iml

Maximum Likelihood Estimator (MLE): Let x = (i1, ..., 2, be iid realizations from probability mass function px (t | 0)
(if X is discrete), or from density fx (f | #) (if X is continuous). where # is a parameter (or vector of parameters). We define
the maximum likelihood estimator (MLE) @, g of # to be the parameter which maximizes the likelihood /log-likelihood:

OyiLe = arg ma L(x | #) = arg ms‘xln Lix |8
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brLE = arg max L(x | #) = arg méa,xln L(x | )

7.2 MLE Examples
7.3 Method of Moments Estimation

Sample Moments: Let X be a random variable, and ¢ € R a scalar. Let 2y, ...,x, be iid realizations (samples) from X.
The k** sample moment of X is: %

We then define the Method of Moments (Mo estimator E}M,,_
ists) to the & simultaneous equations where, for j A, .... k, we set the j

of 0 (01,....0;) to be a solution (if it ex-
1d sample moments equal:

7.4 The Beta and Dirichlet Distributions
Beta Random Variable: X ~ Beta(a, 3). if and only if X has the [ollogdtig PDF:

z € (x = [0.1]
otherwise

of success, where we pretend we've seen o — 1 successes

and g — 1 failures. Hence the mode (most likelg#alue of the probabiliti¥goint with highest density) arg 111[;1_*{' Fx(z), is
x£(0,1]

i =1
andE_X] = m

Also note that there is an annoying “off-by-17 issue: (o — 1 heads and 3 — 1 tails)
careful! It also serves as a conjugate prior for p in the Bernoulli and Geometric dj

Dirichlet RV: X ~ Dir(a;,aq,...,a,). if and orth

iing these parameters, be

A {-Q-{lm Bt W 20,1) and 37 =1
0, .

This is a generalization of the Beta random variable
distribution about some unknown probabilities of
1, az — 1 outcomes of type 2, .... and a,

arg max fx(x), is
zef0.1]f and ¥ @;=1

m 2 outcomes to r=Lhe random vector X is typically the belief
¢ different outcomes, where we end we saw a; — 1 outcomes of type
outcomes of type r . Hence, the mode™f the distribution is the vector,
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way—1 cra=1 =
mode[X] = (z:'_.]w{—l}’ S Gt Z!'—;[u:—l))

7.5 Maximum A Posteriori Estimation

Maximum A Posteriori (MAP) Estimation: Let @ = (xy,...
discrete), or from density fx(f; © = 8) (if X conin
vector of parameters). We define the Maximum A Post

g7 be iid realizations from PMF px(t; 6 = 8) (if X
is the random va}riable representing the parameter (or
i (MAP) estimator #y;.4p of © to be the parameter which

7.6 Properties of Estimators I
Bias: Let # be an estimator for #. The bias of # as an estimator for @ is Bias(é. A= [3] -6 If Bias(é! #) =0, or

equivalently E [9] = . then we say # is an unbiased estimator of .

Mean Squared Error (MSE): The mean sq of an estimator f of # is MSE(A.8) = E [[é - 6']2] :

If @ is an unbiased estimator of # (i.e. E [Q] =
MSE(6,6) = Var (é) + Bias(d, 0)2.

e that MSE(6.8) = Var (e) In fact, in general

7.7 Properties of Estimators I1

~~Consistency: An estimator 6, (depending on n iid samples) of @ is said to be consistent if it converges (in probability) to



NS

7.7 Properties of Estimators I1

~~Consistency: An estimator 6, (depending on n iid samples) of @ is said to be consistent if it converges (in probability) to
1. That is, for any £ > 0. lim P (||‘§" — 6| > 5) =0.
=0

Fisher Information: Let x = (z;,...,2,) be iid realizations from PMF py (4 @) (if X is discrete). or from density function
[fx(t|8) (if X is continuous), where # is a paPsggeter (or vector of pguefieters). The Fisher Information of a parameter ¢
is defined to be

PInLix |0
2

Cramer-Rao Lower Bound (CRLB): Let x = (x,...,2,) be iid realizations from PMF px(f | 0) (if .X is discrete), or
from density function fx (¢t | #) (if X is continuo
estimator for §. then

, where # is a parameter (or vector of parameters). If # is an unbiased

"“";{10}‘ If we achieve this lower bound, meaning

for our estimate. Hence, it is the minimum

variance unbiased estimator (MVUE) for 0.
1(8)!

Var (6)

Efficiency: Let # be an unbiased estimator of . L cy of s ﬁ(é_. ) = < 1.
An estimator is said to be efficient if it achieves the CRLB - meanin
7.8 Properties of Estimators IT1

Statistic: A statistic is any function 7" : " 2
sum), T(xy,...,2,) = max{zy,...,z,} (the max, o T,/ ., T) = 1y (just take the first sample)

Sufficiency: A statistic 7' = T(X;,...,X,) is a su
T =1 and # docs not depend on 6.

Pl =m0, = = Ty = =

Neyman-Fisher Factorization Criterion (NFFC): Let &y,...,2, beNid random samples with likelihood
Lizy, ... ,x,]9). Astatistic T = T(xy,....x,) is suflidient if and only if there exist non-negative functions g and A such that:
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L(Il:"'smn t) _g(xl ----- "rn)‘h(.r(j:l:--wrn}: '(‘i}

8 Statistical Inference

8.1 Confidence Intervals FG' l; 4 C/ L ‘

Confidence Interval: Suppose yon have iid samples a,...,2, from™ome distribution with unknown paramcter #, and yon
have some estimator ¢ for ¢,

A 100{1 — a)% confidence interval for 0 is an interval (typically but not always) centered at 0, [é A, G+ A_, such that
the probability (over the randomness in the samples xq,....2,) @ lies in the interval is 1 — o )

P(oe [é—A,ﬂ+A]) =1-a

If = L%, @ is the sample mean, then 6 is approximately normal by the CLT, and a 100(1 — a)% confidence interval is
given by the formula:

- T o
[9 — 2 _apz——=10+ 2 _nﬂﬁ]

V'
where z;_, /0 = (i (1 — 5 ) and ¢ is the true standard deviation of a single sample {(which may need to be estimated).

8.2 Credible Intervals

Credible Intervals: Suppose vou have iid samples x = (x1,....2,) from some distribution with unknown parameter 6.
You are in the Bayesian setting, so you have chosen a prior distribution for e RV 6.

A 100(1 — a)% credible interval for © is an interval [a, b] such that
in the interval is 1 — a:

e probability (over the randomness in ©) that © lies

=1—-w

Ltribution (like Beta for Bernoulli), the posterior is easy
Jodible interval is given by



8.3 Introduction to Hypothesis Testing

Hypothesis Testing Procedure:

1. Make a claim (like ” Airplane food is good”, "Peapples belong on pi 5 CliEeoo)
2. Set up a null hypothesis Hj, and alternative hypothes}

(a) Alternative hypothesis can be one-sided or two-si

3. Choose a significance level a (usually o = 0.05 or 0.01).
4. Collect data.
5. Compute a p-value, p = P (observing data at least as extreme as ours | Hy is true).

6. State your conclusion. Include an interpretation in the context of the problem.

(a) If p < a, "reject” the null hypothesis Hj in favor of the alternative H 4.
(b) Otherwise, "fail to reject” the null hypothesis Hy.



