1. Review of Main Concepts

(a) Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

(b) Likelihood: Let x_1, \ldots, x_n be iid realizations from probability mass function $p_X(x; \theta)$ (if X discrete) or density $f_X(x; \theta)$ (if X continuous), where θ is a parameter (or a vector of parameters). We define the likelihood function to be the probability of seeing the data.

If X is discrete:

$$L(x_1, \ldots, x_n | \theta) = \prod_{i=1}^{n} p_X(x_i | \theta)$$

If X is continuous:

$$L(x_1, \ldots, x_n | \theta) = \prod_{i=1}^{n} f_X(x_i | \theta)$$

(c) Maximum Likelihood Estimator (MLE): We denote the MLE of θ as $\hat{\theta}_{\text{MLE}}$ or simply $\hat{\theta}$, the parameter (or vector of parameters) that maximizes the likelihood function (probability of seeing the data).

$$\hat{\theta}_{\text{MLE}} = \arg \max_{\theta} L(x_1, \ldots, x_n | \theta) = \arg \max_{\theta} \ln L(x_1, \ldots, x_n | \theta)$$

(d) Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since the logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly the same as the value that maximizes the log-likelihood.

If X is discrete:

$$\ln L(x_1, \ldots, x_n | \theta) = \sum_{i=1}^{n} \ln p_X(x_i | \theta)$$

If X is continuous:

$$\ln L(x_1, \ldots, x_n | \theta) = \sum_{i=1}^{n} \ln f_X(x_i | \theta)$$

(e) Bias: The bias of an estimator $\hat{\theta}$ for a true parameter θ is defined as $\text{Bias}(\hat{\theta}, \theta) = \mathbb{E}[\hat{\theta}] - \theta$. An estimator $\hat{\theta}$ of θ is unbiased iff $\text{Bias}(\hat{\theta}, \theta) = 0$, or equivalently $\mathbb{E}[\hat{\theta}] = \theta$.

(f) Steps to find the maximum likelihood estimator, $\hat{\theta}$:

(a) Find the likelihood and log-likelihood of the data.

(b) Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, $\hat{\theta}$.

(c) Take the second derivative and show that $\hat{\theta}$ indeed is a maximizer, that $\frac{\partial^2 L}{\partial \theta^2} < 0$ at $\hat{\theta}$. Also ensure that it is the global maximizer: check points of non-differentiability and boundary values.

(g) A discrete-time stochastic process (DTSP) is a sequence of random variables X_0, X_1, X_2, \ldots, where X_t is the value at time t. For example, the temperature in Seattle or stock price of TESLA each day, or which node you are at after each time step on a random walk on a graph.

(h) A Markov Chain is a DTSP, with the additional following three properties:
I. ...has a finite (or countably infinite) **state space** $S = \{s_1, \ldots, s_n\}$ which it bounces between, so each $X_t \in S$.

II. ...satisfies the **Markov property**. A DTSP satisfies the Markov property if the future is (conditionally) independent of the past given the present. Mathematically, it means, $P(X_{t+1} = x_{t+1} | X_0 = x_0, X_1 = x_1, \ldots, X_{t-1} = x_{t-1}, X_t = x_t) = P(X_{t+1} = x_{t+1} | X_t = x_t)$.

III. ...has **stationary transition probabilities**. Meaning, if we are at some state s_i, we transition to another state s_j with probability independent of the current time. Due to this property and the previous, the transitions are governed by n^2 probabilities: the probability of transitioning from one of n current states to one of n next states. These are stored in a square $n \times n$ **transition probability matrix** (TPM) P, where $P_{ij} = P(X_{t+1} = s_j | X_t = s_i)$ is the probability of transitioning from state s_i to state s_j for any/every value of t.

2. **312 Grades**

Suppose Professor Karlin loses everyone’s grades for 312 and decides to make it up by assigning grades randomly according to the following probability distribution, and hoping the n students won’t notice: give an A with probability 0.5, a B with probability θ, a C with probability 2θ, and an F with probability $0.5 - 3\theta$. Each student is assigned a grade independently. Let x_A be the number of people who received an A, x_B the number of people who received a B, etc, where $x_A + x_B + x_C + x_F = n$. Find the MLE for θ, $\hat{\theta}$.

3. **A Red Poisson**

Suppose that x_1, \ldots, x_n are i.i.d. samples from a Poisson(θ) random variable, where θ is unknown. Find the MLE of θ.

4. **Independent Shreds, You Say?**

You are given 100 independent samples $x_1, x_2, \ldots, x_{100}$ from Bernoulli(θ), where θ is unknown. (Each sample is either a 0 or a 1). These 100 samples sum to 30. You would like to estimate the distribution’s parameter θ. Give all answers to 3 significant digits.

 (a) What is the maximum likelihood estimator $\hat{\theta}$ of θ?

 (b) Is $\hat{\theta}$ an unbiased estimator of θ?

5. **Y Me?**

Let y_1, y_2, \ldots, y_n be i.i.d. samples of a random variable with density function

$$f_Y(y|\theta) = \frac{1}{2\theta} \exp\left(-\frac{|y|}{\theta}\right).$$

Find the MLE for θ in terms of $|y_i|$ and n.

6. **A biased estimator**

In class, we showed that the maximum likelihood estimate of the variance θ_2 of a normal distribution (when both the true mean μ and true variance σ^2 are unknown) is what’s called the **population variance**. That is

$$\hat{\theta}_2 = \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\theta}_1)^2\right),$$

where $\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the MLE of the mean. Is $\hat{\theta}_2$ unbiased?
7. Faulty Machines
You are trying to use a machine that only works on some days. If on a given day, the machine is working it will break down the next day with probability $0 < b < 1$, and works on the next day with probability $1 - b$. If it is not working on a given day, it will work on the next day with probability $0 < r < 1$ and not work the next day with probability $1 - r$.

(a) In this problem we will formulate this process as a Markov chain. First, let X_t be a random variable that denotes the state of the machine at time t. Then, define a state space S that includes all the possible states that the machine can be in. Lastly, for all $A, B \in S$ find $P(X_{t+1} = A \mid X_t = B)$ (A and B can be the same state).

(b) Suppose that on day 1, the machine is working. What is the probability that it is working on day 3?

(c) As $n \to \infty$, what does the probability that the machine is working on day n converge to? To get the answer, solve for the stationary distribution.

8. Three tails
You flip a fair coin until you see three tails in a row. Model this as a Markov chain with the following states:
- S: start state, which we are only in before flipping any coins.
- H: We see a heads, which means no streak of tails currently exists.
- T: We’ve seen exactly one tail in a row so far.
- TT: We’ve seen exactly two tails in a row so far.
- TTT: We’ve accomplished our goal of seeing three tails in a row and stop flipping.

(a) Write down the transition probability matrix.

(b) Write down the system of equations whose variables are $D(s)$ for each state $s \in \{S, H, T, TT, TTT\}$, where $D(s)$ is the expected number of steps until state TTT is reached starting from state s. Solve this system of equations to find $D(S)$.

(c) Write down the system of equations whose variables are $\gamma(s)$ for each state $s \in \{S, H, T, TT, TTT\}$, where $\gamma(s)$ is the expected number of heads seen before state TTT is reached. Solve this system to find $\gamma(S)$, the expected number of heads seen overall until getting three tails in a row.

9. Another Markov chain
Suppose that the following is the transition probability matrix for a 4 state Markov chain (states 1,2,3,4).

\[
P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 \\
1/3 & 0 & 0 & 2/3 \\
1/3 & 1/3 & 0 & 1/3 \\
1/5 & 2/5 & 2/5 & 0
\end{bmatrix}
\]

(a) What is the probability that $X_2 = 4$ given that $X_0 = 4$?

(b) Write down the system of equations that the stationary distribution must satisfy and solve them.
10. Law of Total Probability Review

(a) (Discrete version) Suppose we flip a coin with probability U of heads, where U is equally likely to be one of $\Omega_U = \{0, \frac{1}{n}, \frac{2}{n}, \ldots, 1\}$ (notice this set has size $n + 1$). Let H be the event that the coin comes up heads. What is $P(H)$?

(b) (Continuous version) Now suppose $U \sim \text{Uniform}(0,1)$ has the continuous uniform distribution over the interval $[0, 1]$. What is $P(H)$?

(c) Let’s generalize the previous result we just used. Suppose E is an event, and X is a continuous random variable with density function $f_X(x)$. Write an expression for $P(E)$, conditioning on X.

11. Poisson CLT practice

Suppose X_1, \ldots, X_n are iid Poisson(λ) random variables, and let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$, the sample mean. How large should we choose n to be such that $P(\frac{\lambda}{2} \leq \bar{X}_n \leq \frac{3\lambda}{2}) \geq 0.99$? Use the CLT and give an answer involving $\Phi^{-1}(\cdot)$. Then evaluate it exactly when $\lambda = 1/10$ using the Φ table on the last page.