
CSE 312: Foundations of Computing II
Section 3: Conditional Probability Solutions

1. Review of Main Concepts
(a) Conditional Probability: P(A|B) =

P(A ∩B)

P(B)

(b) Independence: Events E and F are independent iff P(E ∩ F ) = P(E)P(F ), or equivalently P(F ) =
P(F |E), or equivalently P(E) = P(E|F )

(c) Bayes Theorem: P(A|B) =
P(B|A)P(A)

P(B)

(d) Partition: Nonempty events E1, . . . , En partition the sample space Ω iff

• E1, . . . , En are exhaustive: E1 ∪ E2 ∪ · · · ∪ En =
⋃n

i=1Ei = Ω, and
• E1, . . . , En are pairwise mutually exclusive: ∀i 6= j, Ei ∩ Ej = ∅

(e) Law of Total Probability (LTP): Suppose A1, . . . , An partition Ω and let B be any event. Then
P(B) =

∑n
i=1 P(B ∩Ai) =

∑n
i=1 P(B | Ai)P(Ai)

(f) Bayes Theorem with LTP: Suppose A1, . . . , An partition Ω and let B be any event. Then P(A1|B) =
P(B | A1)P(A1)∑n
i=1 P(B | Ai)P(Ai)

. In particular, P(A|B) =
P(B | A)P(A)

P(B | A)P(A) + P(B | AC)P(AC)

(g) Chain Rule: Suppose A1, ..., An are events. Then,

P(A1 ∩ ... ∩An) = P(A1)P(A2|A1)P(A3|A1 ∩A2)...P(An|A1 ∩ ... ∩An−1)

2. Naive Bayes
Most of Section 3 will be an introduction to an application of Bayes’ Theorem called the Naive Bayes Classifier.
The relevant Ed lesson is available here.

3. Random Grades?
Suppose there are three possible teachers for CSE 312: Martin Tompa, Anna Karlin, and Adam Blank. Suppose
the probabilities of getting an A in Martin’s class is 5

15 , for Anna’s class is 3
15 , and for Adam’s class is 1

15 .
Suppose you are assigned a grade randomly according to the given probabilities when you take a class from
one of these professors, irrespective of your performance. Furthermore, suppose Adam teaches your class with
probability 1

2 and Anna and Martin have an equal chance of teaching if Adam isn’t. What is the probability you
had Adam, given that you received an A? Compare this to the unconditional probability that you had Adam.
Solution:
Let T,K,B be the events you take 312 from Tompa, Karlin, and Blank, respectively. Let A be the event you
get an A. We use Bayes’ theorem with LTP, conditioning on each of T,K,B since those events partition our
sample space.

P(B|A) =
P(A|B)P(B)

P(A|T )P(T ) + P(A|K)P(K) + P(A|B)P(B)
=

1/15 · 1/2
5/15 · 1/4 + 3/15 · 1/4 + 1/15 · 1/2

=
2

5 + 3 + 2
=

1

5

Note that we used Bayes’ Theorem because we already know the reverse probability Pr(A|B), which makes it
easy for us to evaluate the initial probability Pr(B|A).
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4. Game Show
Corrupted by their power, the judges running the popular game show America’s Next Top Mathematician have
been taking bribes from many of the contestants. During each of two episodes, a given contestant is either
allowed to stay on the show or is kicked off. If the contestant has been bribing the judges, she will be allowed
to stay with probability 1. If the contestant has not been bribing the judges, she will be allowed to stay with
probability 1/3, independent of what happens in earlier episodes. Suppose that 1/4 of the contestants have
been bribing the judges. The same contestants bribe the judges in both rounds.

(a) If you pick a random contestant, what is the probability that she is allowed to stay during the first
episode?

Solution:
Let Si be the event that she stayed during the i-th episode. By the Law of Total Probability conditioning
on whether the contestant bribed the judges we get,

P(S1) = P(Bribe) P(S1 | Bribe) + P(No bribe) P(S1 | No bribe) = 1

4
· 1 + 3

4
· 1
3
=

1

2

(b) If you pick a random contestant, what is the probability that she is allowed to stay during both episodes?

Solution:
Let Si be defined as before. Staying during both episodes is equivalent to the contestant staying in
episodes 1 and 2, so the event S1 ∩ S2. By the Law of Total Probability, we get:

P(S1 ∩ S2) = P(Bribe) P(S1 ∩ S2 | Bribe) + P(No bribe) P(S1 ∩ S2 | No bribe) (1)

We know a contestant is guaranteed to stay on the show, given that they are bribing the judges, hence:

P(S1 ∩ S2 | Bribe) = 1

On the other hand, if they have not been bribing judges, then the probability they stay on the show is
1/3, independent of what happens on earlier episodes. By conditional independence, we have:

Pr(S1 ∩ S2 | No bribe) = Pr(S1 | No bribe)Pr(S2 | No bribe) = 1

3
· 1
3

Plugging our results above into equation (1) gives us:

P(S1 ∩ S2) =
1

4
· 1 + 3

4
· 1
3
· 1
3
=

1

3

(c) If you pick a random contestant who was allowed to stay during the first episode, what is the probability
that she gets kicked off during the second episode?

Solution:
By the definition of conditional probability and the Law of Total Probability,

P(S2 | S1) =
P(S1 ∩ S2)

P(S1)
=

P(S1 ∩ S2 | Bribe)P(Bribe) + P(S1 ∩ S2 | No bribe)P(No bribe)
P(S1)

We have already computed P (S1) in part (a). We compute the numerator term by term. Given that a
contestant is bribing the judges, they are guaranteed to stay on the show. As such:

P(S1 ∩ S2 | Bribe) = P(S1 | Bribe) · P(S2 | Bribe) = 1 · 0 = 0
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On the other hand, if they have not been bribing judges, the probability they leave the show is 2/3 (by
complementing). We can then write:

P(S1 ∩ S2 | No bribe) = P(S1∩ | No bribe) · P(S2 | No bribe) = 1

3
· 2
3

We can now evaluate our initial expression:

P(S2 | S1) =
0 · 1

4 + 1
3 · 2

3 · 3
4

1
2

=
1/6

1/2
=

1

3

(d) If you pick a random contestant who was allowed to stay during the first episode, what is the probability
that she was bribing the judges?

Solution:
Let B be the event that she bribed the judges. By Bayes’ Theorem,

P(B | S1) =
P(S1 | B)P(B)

P(S1)
=

1 · 1
4

1
2

=
1

2

5. Parallel Systems
A parallel system functions whenever at least one of its components works. Consider a parallel system of n
components and suppose that each component works with probability p independently.

(a) What is the probability the system is functioning?

Solution:
Let Ci be the event component i is working, and F be the event that the system is functioning.

For the system to function, it is sufficient for any component to be working. This means that the
only case in which the system does not function is when none of the components work. We can then use
complementing to compute P(F ), knowing that P(Ci) = p. We get:

P(F ) = 1−P(FC) = 1−P(
n⋂

i=1

CC
i ) = 1−

n∏
i=1

P(CC
i ) = 1−

n∏
i=1

(1− P(Ci)) = 1−
n∏

i=1

(1− p) = 1− (1− p)n

Note that P(
⋂n

i=1C
C
i ) =

∏n
i=1 P(CC

i ) due to independence of Ci (components working independently of
each other). Note also that

∏n
i=1 a = an for any constant a.

(b) If the system is functioning, what is the probability that component 1 is working?

Solution:
We know that for the system to function only one component needs to be working, so for all i, we have
P(F | Ci) = 1. Using Bayes Theorem, we get:

P(C1|F ) =
P(F |C1)P(C1)

P(F )
=

1 · p
1− (1− p)n

=
p

1− (1− p)n

(c) If the system is functioning and component 2 is working, what is the probability that component 1 is
working?
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Solution:

P(C1|C2, F ) = P(C1|C2) = P(C1) = p

where the first equality holds because knowing C2 and F is just as good as knowing C2 (since if C2

happens, F does too), and the second equality holds because the components working are independent
of each other.

More formally, we can use the definition of conditional probability along with a careful application of
the chain rule to get the same result. We start with the following expression:

P(C1 | C2, F ) =
P(C1, C2, F )

P(C2, F )
=

P(F | C1, C2) · P (C1 | C2)P(C2)

P(F | C2) · P(C2)

We note that the system is guaranteed to work if any one component is working, so P(F | C1, C2) =
P(F |C2) = 1. We also note that components work independently of each other, hence P(C1|C2) = P(C1).
With that in mind, we can rewrite our expression so that:

P(C1 | C2, F ) =
1 · P(C1) · P(C2)

1 · P(C2)
= P(C1) = p

6. Marbles in Pockets
A girl has 5 blue and 3 white marbles in her left pocket, and 4 blue and 4 white marbles in her right pocket.
If she transfers a randomly chosen marble from left pocket to right pocket without looking, and then draws a
randomly chosen marble from her right pocket, what is the probability that it is blue?
Solution:
Let W_, B_ denote the event that we choose a white marble or a blue marble respectively, with subscripts L,R
indicating from which pocket we are picking – left and right, respectively.
We know that we will pick from the left pocket first, and right pocket second. We can then use the Law of
Total Probability conditioning on the color of the transferred marble so that:

P(BR) = P(WL) · P(BR|WL) + P(BL) · P(BR|BL) =
3

8
· 4
9
+

5

8
· 5
9
=

37

72

7. Allergy Season
In a certain population, everyone is equally susceptible to colds. The number of colds suffered by each person
during each winter season ranges from 0 to 4, with probability 0.2 for each value (see table below). A new cold
prevention drug is introduced that, for people for whom the drug is effective, changes the probabilities as shown
in the table. Unfortunately, the effects of the drug last only the duration of one winter season, and the drug is
only effective in 20% of people, independently.

number of colds no drug or ineffective drug effective
0 0.2 0.4
1 0.2 0.3
2 0.2 0.2
3 0.2 0.1
4 0.2 0.0

(a) Sneezy decides to take the drug. Given that he gets 1 cold that winter, what is the probability that the
drug is effective for Sneezy?
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Solution:
Let E be the event that the drug is effective for Sneezy, and Ci be the event that he gets i colds the first
winter. By Bayes’ Theorem,

P(E | C1) =
P(C1 | E)P(E)

P(C1 | E)P(E) + P(C1 | E)P(E)
=

0.3× 0.2

0.3× 0.2 + 0.2× 0.8
=

3

11

(b) The next year he takes the drug again. Given that he gets 2 colds in this winter, what is the updated
probability that the drug is effective for Sneezy?

Solution:
Let the reduced sample space for part (b) be C1 from part (a), so that PC1(E) = PΩ(E|C1). Let Di be
the event that he gets i colds the second winter. By Bayes’ Theorem,

P(E | D2) =
P(D2 | E)P(E)

P(D2 | E)P(E) + P(D2 | E)P(E)
=

0.2× 3
11

0.2× 3
11 + 0.2× 8

11

=
3

11

(c) Why is the answer to (b) the same as the answer to (a)?

Solution:
The probability of two colds whether or not the drug was effective is the same. Hence knowing that
Sneezy got two colds does not change the probability of the drug’s effectiveness.

8. A game
Pemi and Shreya are playing the following game: A 6-sided die is thrown and each time it’s thrown, regardless
of the history, it is equally likely to show any of the six numbers.

• If it shows 5, Pemi wins.

• If it shows 1, 2, or 6, Shreya wins.

• Otherwise, they play a second round and so on.

What is the probability that Shreya wins on the 4th round?

Solution:
Let Si be the event that Shreya wins on the i-th round and let Ni be the event that nobody wins on the i-th
round. Then we are interested in the event

N1 ∩N2 ∩N3 ∩ S4.

Using the chain rule, we have

P(N1, N2, N3, S4) = P(N1) · P(N2|N1) · P(N3|N2, N3) · P(S4|N1, N2, N3)

=
1

3
· 1
3
· 1
3
· 1
2
.

In the final step, we used the fact that if the game hasn’t ended, then the probability that it continues for
another round is the probability that the die comes up 3 or 4, which has probability 1/3.
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9. Another game
Leiyi and Luxi are playing a tournament in which they stop as soon as one of them wins n games. Luxi wins
each game with probability p and Leiyi wins with probability 1− p, independently of other games. What is the
probability that Luxi wins and that when the match is over, Leiyi has won k games?
Solution:
Since the match is over when someone wins the nth game, and Luxi won the match, Luxi won the last game.
Before this, Luxi must’ve won n− 1 games and Leiyi must’ve won k games. Therefore, the probability that we
reach a point in time when Luxi has won n− 1 games and Leiyi has won k games is: pn−1 · (1− p)k ·

(
n−1+k

k

)
.

The binomial coefficient counts the number of ways of picking the k games that Leiyi has won out of n− 1+ k
games.
At that point in time, we want Luxi to win the next game so that she has won n games. This happens with
probability p, independent of previous outcomes. Therefore, our final probability is:

pn−1 · (1− p)k ·
(
n− 1 + k

k

)
· p = pn · (1− p)k ·

(
n− 1 + k

k

)
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