Course Resources:

1. Course Website: https://courses.cs.washington.edu/courses/cse312/21su

2. Gradescope, EdStem, Zoom Links, Calendar, and other materials linked from the website above.

Announcement: You should regularly check the class web site for announcements and other information, including the most up-to-date information on problem sets and errata. The class web page will also have the schedule of topics to be covered and links to other class materials, including accompanying lecture notes, slides (after lecture) etc. If you have any personal questions, please email the instructors directly. Any other non-sensitive questions about course content should be posted on our discussion forum. The discussion forum also allows posting privately that are visible only to the course staff.

TAs and Office Hours: See website.

Textbooks

There is no required textbook for the course. We will be linking to a draft textbook written by Alex Tsun from his summer offering of 312. We will be linking the relevant sections associated with each lecture from the website. This should be all you need.

Nonetheless, you may find following optional textbooks and practice resources useful.

- Berkeley’s EECS 70 online practice, http://practice.eecs70.org/#/home

Prerequisites: CSE 311 and MATH 126. Here is a quick rundown of some of the mathematical tools we’ll be using in this class: calculus (integration and differentiation), linear algebra (basic operations on vectors and matrices), an understanding of the basics of set theory (subsets, complements, unions, intersections, cardinality, etc.), and familiarity with basic proof techniques (including induction).

Why is CSE 312 Important?

While the initial foundations of computer science began in the world of discrete mathematics (after all, modern computers are digital in nature), recent years have seen a surge in the use of probability as a tool for the analysis and development of new algorithms and systems. As a result, it is becoming increasingly
important for budding computer scientists to understand probability theory, both to provide new perspectives on existing ideas and to help further advance the field in new ways.

Probability is used in a number of contexts, including analyzing the likelihood that various events will happen, better understanding the performance of algorithms (which are increasingly making use of randomness), or modeling the behavior of systems that exist in asynchronous environments ruled by uncertainty (such as requests being made to a web server). Probability provides a rich set of tools for modeling such phenomena and allowing for precise mathematical statements to be made about the performance of an algorithm or a system in such situations.

Furthermore, computers are increasingly often being used as data analysis tools to glean insights from the enormous amounts of data being gathered in a variety of fields; you’ve no doubt heard the phrase “big data” referring to this phenomenon. Probability theory and statistics are the foundational methods used for designing new algorithms to model such data, allowing, for example, a computer to make predictions about new or uncertain events. In fact, many of you have already been the users of such techniques. For example, most email systems now employ automated spam detection and filtering. Methods for being able to automatically infer whether or not an email message is spam are frequently rooted in probabilistic methods. Similarly, if you have ever seen online product recommendation (e.g., “customers who bought X are also likely to buy Y”), you’ve seen yet another application of probability in computer science. Even more subtly, answering detailed questions like how many buckets you should have in your a hash table or how many machines you should deploy in a data center (server farm) for an online application make use of probabilistic techniques to give precise formulations based on testable assumptions.

Our goal in this course is to build foundational skills and give you experience in the following areas:

1. **Understanding the combinatorial nature of problems**: Many real problems are based on understanding the multitude of possible outcomes that may occur, and determining which of those outcomes satisfy some criteria we care about. Such an understanding is important both for determining how likely an outcome is, but also for understanding what factors may affect the outcome (and which of those may be in our control).

2. **Working knowledge of probability theory and some of the key results in statistics**: Having a solid knowledge of probability theory and statistics is essential for computer scientists today. Such knowledge includes theoretical fundamentals as well as an appreciation for how that theory can be successfully applied in practice. We hope to impart both these concepts in this class.

3. **Appreciation for probabilistic statements**: In the world around us, probabilistic statements are often made, but are easily misunderstood. For example, when a candidate in an election is said to have a 53% likelihood of winning does this mean that the candidate is likely to get 53% of the vote, or that that if 100 elections were held today, the candidate would win 53% of them? Understanding the difference between these statements requires understanding the underlying probabilistic analysis.

4. **Applications in machine learning and theoretical computer science**: We are not studying probability theory simply for the joy of drawing summation symbols (okay, maybe some people are, but that’s not what we’re really targeting in this class), but rather because there are a wide variety of applications where probability and statistics allow us to solve problems that might otherwise be out of reach (or would be solved more poorly without the tools that probability and statistics can bring to bear). We’ll look at examples of such applications throughout the class. For example, machine learning is a quickly growing subfield of artificial intelligence which has grown to impact many applications in computing. It focuses on analyzing large quantities of data to build models that can then be harnessed in real problems, such as filtering email, improving web search, understanding computer system performance, predicting financial markets, or analyzing DNA. Probability and statistics form the foundation of these systems. Another example application area is the use of randomized algorithms
and probabilistic data structures. These usually have simpler and more elegant implementations than their deterministic counterparts, and have more efficient time and/or space complexity. We will be learning about some of these applications and you will implement some of them.

Goals for Summer 2021:
We fully recognize that this experience cannot replace what we normally have on campus, and that many of you have personal situations that may change throughout the quarter. That being said, we are determined to reach the following course goals to the best of our ability: (1) To maintain the intellectual rigor of the CSE 312 curriculum while providing flexible ways for you to learn, and (2) To foster and maintain human connections and a sense of community throughout this online course. We have adjusted the typical course structure to meet these goals.

Many of the changes that we are making are designed to help foster intellectual nourishment, social connection, and personal accommodation—through accessible, asynchronous content for diverse access, time zones, and contexts, and optional, synchronous discussion to learn together and combat isolation. Please bear in mind that none of us have fully adjusted to the experience of remote, online classrooms at this scale, and we may have to adapt throughout the quarter. Everyone needs support and understanding in this unprecedented moment, and we are here to listen to you. Thanks and welcome to CSE 312. (Credit for this wording goes to Brandon Bayne from UNC - Chapel Hill.)

Tentative Course Outline:

- 1. Combinatorial Theory
- 2. Discrete Probability
- 3. Discrete Random Variables
- 4. Continuous Random Variables
- 5. Multiple Random Variables
- 6. Concentration Inequalities
- 7. Statistical Estimation
- 8. Applications in machine learning and theoretical computer science

Lectures:
We will be holding live lectures remotely via Zoom on Mondays, Wednesdays, and Fridays, 12:00 AM - 1:00 PM Pacific Time. The lectures will be recorded on Zoom, and you will be able to access those recordings within a few hours after class on Canvas.

In addition, linked from the website are video recordings that Alex Tsun made that accompany the provided lecture notes. You may find those helpful. They cover the same material that we cover in class, though sometimes in class we will use different examples to illustrate the same concept.

Grading Breakdown:

- Concept Checks 10%
- Problem Sets (7) 60%
- Real World mini-projects 10%
- Review Summaries 10%
- Simulated Final 10%

Concept Checks

- Associated with each lecture, there will be a "concept check" for you to take on Gradescope. This will consist of 4-8 questions that test your basic understanding of the concepts covered in lecture. The questions are intended to be straightforward to answer; each concept check should not require more than about 20-30 minutes.
• Concept checks are due 30 minutes before the next Monday’s lecture. This will be 11:30 AM PST on the Monday following the week it is released.

• You can submit your answers as many times as you want; we will only grade the final submission. Correct answers will reveal the answer explanation; all other answers will not, so you can keep trying until you see the answer explanation.

• Since there will be about 26 concept checks (one per lecture), we will drop your lowest 3 scores when calculating your grade in the class.

• As the concept checks are meant to be light and not too time-consuming, we don’t want you to get stuck on any problem too long or obsess over whether your answer is correct or not. Any score of 80% of higher overall will be recorded as a perfect score.

Problem Sets

• There will be about 7 problem sets. All of them will involve a written part and some of them will involve a coding problem as well. You will be submitting your homeworks on Gradescope.

• The coding you do on the problem sets will be done in Python. The implementation you do will provide you with a deeper understanding of how the theory we learn in this class is used in practice and should be a lot of fun. Note that we do not expect you to have any experience or knowledge of Python – we will provide you with tutorials and other kinds of help to get you started. A huge bonus of this class will be that you will come away with basic, working knowledge of Python (which you will undoubtedly use in the future, and definitely if you take CSE 446, the machine learning class).

• We strongly encourage you to type the written parts up using \LaTeX. There are links to resources for learning \LaTeX on the website. If you take other classes that involve a fair amount of math (such as the machine learning class CSE 446) or plan to write research papers, you will need to typeset in \LaTeX anyway. It is a very useful skill, so you may as well start now.

• You must show your work; at a minimum 1-2 sentences per question, but ideally as much as you would need to explain to a fellow classmate who hadn’t solved the problem before. Be concise. A correct answer with no work is worth nothing, less than a wrong answer with some work.

• You must tag the question parts of your homework correctly on Gradescope. Failure to do so will result in a 0 on every untagged question. Please check your submission by clicking each question, and making sure your solution appears there.

• The coding parts of the homeworks will be written in Python3, with no exceptions. This because the coding parts will be autograded. There are no hidden tests, and you’ll have unlimited attempts. Whatever you see last on Gradescope for that section will be your grade. You will be able to write and test them on the edstem platform, which means that essentially no setup is required.

• Regrade requests are due on Gradescope within one week of grades being published.

• It is okay to discuss PSets with others, but you should keep those discussions at a high level and you should not give away answers or show your solution to someone else. You should write your solutions up entirely on your own!

Real World mini-projects: There will be two mini projects that deal with the real-world implications of the tools from this class. Unlike homeworks, mini-projects will not focus on practicing new technical concepts. Instead they will ask you to consider how and whether the concepts from this class might be applied in real-life, and use them to gain insight on ethical questions.
Review Summaries: Instead of a midterm, we will have three "Review Summaries" that are meant to replace the reviewing, summarizing, and reflecting that studying for exams provides. These will be take-home assignments that will be due at three different points in the quarter.

Exams: We will have a single take-home final. The final will be a cumulative assignment consisting of problems requiring you to engage with all course content. There will be three parts to the final:

1. Completing the set of problem on your own in a given time
2. Reviewing your submission against provided solutions and annotating areas for improvement
3. Meeting 1-on-1 with a TA to discuss your results and any questions you have before the course ends.

More details and practice materials will be announced closer to the exams. We plan to give you a window of at least 24 hours to complete the timed exam and not use any proctoring tools (e.g., Proctorio.) If you already know you will have a conflict during Finals Week, please let us know early in the quarter.

Late Policy:

- Problem Sets, Real world Mini-projects and Review Summaries:
 - You have 6 late days during the quarter.
 - Regardless of how many late days you have, you cannot submit an assignment more than 48 hours after it is due without prior permission from course staff. For example, an assignment due at 11:59 PM on Thursday could be turned in at 11:58 PM on Saturday with no penalty by using two late days. However, you cannot submit once you see 11:59 PM on the clock, as it would have been 48 hours past due.
 - If you run out of late days, you may still turn in an assignment late, at a penalty of 15% of the assignment’s point value per day.
 - Late days are designed to handle the “normal” difficulties in a quarter (e.g. prioritizing different courses, fundraising for an RSO, or attending a relative’s birthday Zoom call). If your situation goes beyond those “normal” circumstances, you should contact the course staff as early as you can.

- Exam submissions will not be accepted late.

- Concept Checks cannot be submitted late.

If you have extenuating circumstances that interfere with completing these activities on-time, you should contact the course staff.

Attendance Policy: Regular attendance to lecture and section is strongly recommended. Moreover, I encourage you in the strongest possible terms to ask questions during lecture and sections (as well as office hours and on the discussion board). That will make the class more fun for all and you will definitely learn more and have an easier time with the homework!! This class is fast-paced, and the problem sets will be challenging. Most of the sections will be devoted to giving you practice on problems similar to those on the psets.

Academic Honesty: Lack of knowledge of the academic honesty policy is not a reasonable explanation for a violation. Each student is expected to do their own work on the problem sets in CSE 312. Students may discuss problem sets with each other as well as the course staff. Any discussion of problem set questions with others should be noted on a student’s final write-up of the problem set answers. Each student must turn in their own write-up of the problem set solutions. Excessive collaboration (i.e., beyond discussing problem set questions) can result in honor code violations. Questions regarding acceptable collaboration should be
directed to the class instructor prior to the collaboration. It is a violation of the honor code to copy problem set solutions from others, or to copy or derive them from solutions found online or in textbooks, previous instances of this course, or other courses covering the same topics (e.g., STAT 394/5 or probability courses at other schools). Copying of solutions from students who previously took this or a similar course is also a violation of the honor code. Finally, a good point to keep in mind is that you must be able to explain and/or re-derive anything that you submit.

Violations of the above or any other issue of academic integrity are taken very seriously, and may be referred to the University. Please refer to the Allen School’s Academic Misconduct webpage for a detailed description of what is allowable and what is not.

The following is a partial list of collaborative actions that are encouraged and prohibited. These apply to interactions outside of your PSet group. This list is not intended to be exhaustive; there are many actions not included that may fall under either heading. This list is here to help you understand examples of things that are/aren’t allowed. If you are ever unsure, please ask the course staff before potentially acting in a way that violates this policy.

The following types of collaboration are encouraged:

- Discussing the content of lessons, sections or any provided examples.
- Working collaboratively on solutions to practice problems or checkpoints.
- Posting and responding to questions on the course message board, including responding to questions from other students (without providing assessment code; see below).
- Describing, either verbally or in text, your approach to a take-home assessment at a high-level and in such a way that the person receiving the description cannot reliably reproduce your exact work. Such description should be in English or another natural human language (i.e., not code or a picture of your solution).
- Asking a member of the course staff about concepts with which you are struggling or bugs in your work.

The following types of collaboration are prohibited and may constitute academic misconduct:

- Looking at another person’s submission on a take-home assessment, or substantially similar code, at any point, in any form, for any reason, and for any amount of time. This restriction includes work written by classmates, family members or friends, former students, and online resources (such as GitHub or Chegg), among other sources.
- Showing or providing your submission on a take-home assessment to another student at any time, in any format, for any reason.
- Submitting work that contains code copied from another resource, even with edits or changes, except for resources explicitly provided by the course staff.
- Having another person ”walk you through” work you submit, or walking another person through work they submit, such that the work produced can be entirely and reliably reconstructed from the instructions provided. (That is, submitting work that you produced simply by following instructions on what to write.) This restriction includes classmates, former students, family members or friends, paid tutors or consultants, “homework support” services (such as Chegg), etc.
Accommodations:

- **Disability Accommodation Policy**: See [here](#) for the current policy.
- **Religious Accommodation Policy**: See [here](#) for the current policy.

Acknowledgements: Syllabus wording largely influenced by Lisa Yan, Chris Piech, and Mehran Sahami from Stanford University’s CS 109, and Alex Tsun and Anna Karlin’s offering of CSE 312.