
CSE 312

Foundations of Computing II
Lecture 20: Continuity Correction & Distinct Elements

1

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au
incorporating ideas from Alex Tsun’s and Anna Karlin’s slides for 312 20su and 20au

Rachel Lin, Hunter Schafer

9

Application: Distinct Elements
(code this in Pset 6)

Data mining – Stream Model

● In many data mining situations, the data is not known ahead of time.
Examples: Google queries, Twitter or Facebook status updates

Youtube video views
● In some ways, best to think of the data as an infinite stream that is

non-stationary (distribution changes over time)

● Input elements (e.g. Google queries) enter/arrive one at a time.
We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream
using a limited amount of memory?

Problem Setup

● Input: sequence of ! elements "#, "%, … , "' from a known
universe ((e.g., 8-byte integers).

● Goal: perform a computation on the input, in a single left to
right pass where

○ Elements processed in real time

○ Can’t store the full data. => use minimal amount of storage while
maintaining working “summary”

What can we compute?

● Some functions are easy:

○ Min

○ Max

○ Sum

○ Average

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Today: Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application:

You are the content manager at YouTube, and you
are trying to figure out the distinct view count for a
video. How do we do that?

Note: A person can view their favorite videos
several times, but they only count as 1 distinct view!

Other applications

● IP packet streams: How many distinct IP addresses or IP flows
(source+destination IP, port, protocol)

* Anomaly detection, traffic monitoring
● Search: How many distinct search queries on Google on a certain topic

yesterday
● Web services: how many distinct users (cookies) searched/browsed a

certain term/item
* Advertising, marketing trends, etc.

Counting distinct elements

Want to compute number of distinct IDs in the stream.
● Naïve solution: As the data stream comes in, store all distinct

IDs in a hash table.
● Space requirement O(m) , where m is the number of distinct IDs

● Consider the number of users of youtube, and the number
videos on youtube. This is not feasible.

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5

Counting distinct elements

Want to compute number of distinct IDs in the stream.
● How to do this without storing all the elements?

Yet another super cool application of probability

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Hash function ℎ: # → [0,1]
Assumption: For distinct values in #, the function maps to iid
(independent and identically distributed) Unif(0,1) random numbers.

Important: if you were to feed in two equivalent elements, the function
returns the same number.
• So m distinct elements à m iid uniform *+’s

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

,-, ,., ,/, ,-, *0, ,., ,-, ,1, ,-, *2, *3

Min of IID Uniforms

If !",⋯ , !% are iid Unif(0,1), where do we expect the points to end up?

0 1

0 1

0 1

x

x x

x x x x

& = 1

& = 2

& = 4
E[min !",⋯ , !0] = "

02" =
"
3

E[min !"] = "
"2" =

"
4

E[min !", !4] = "
42" =

"
5

In general, E[min !",⋯ , !%] = "
%2"

A super duper clever idea

If !",⋯ , !% are iid Unif(0,1), where do we expect the points to end up?

In general, E[min !",⋯ , !+] = "
+."

Idea: m = "
/[012 34,⋯,35] − 1

Let’s keep track of the value val of min of hash values,

and estimate 8 as Round "
=>? − 1

The Distinct Elements Algorithm

Stream: 13, 25, 19, 25, 19, 19

Hashes:

Distinct Elements Example

val = infty

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51,

Distinct Elements Example

val = infty

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51,

Distinct Elements Example

val = 0.51

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26,

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79,

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26,

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79,

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26

Return
round(1/0.26 - 1) =
round(2.846) = 3

Diy: Distinct Elements Example II

Stream: 11, 34, 89, 11, 89, 23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

val = 0.1

Return= 9

Problem

val = min (),⋯ , (,
E[/01] = 1

4 + 1

Algorithm:
Track /01 = min ℎ 7) ,⋯ , ℎ 78 = min((),⋯ , (,)
estimate m = 1/val -1

Var /01 ≈ 1
4 + 1 >

But, val is not E[val]! How far is val from E[val]?

How can we reduce the variance?

Idea: Repetition to reduce variance!
Use k independent hash functions ℎ", ℎ$,⋯ ℎ&
Keep track of k independent min hash values

'()" = min ℎ" ." ,⋯ , ℎ" ./ = min(Y"",⋯ , 23")
'()$ = min ℎ$." ,⋯ , ℎ$./ = min(Y"$,⋯ , 23$)

…	…	
'()& = min ℎ& ." ,⋯ , ℎ& ./ = min(Y"7,⋯ , 23&)

'() = "
& Σ9'()9, Estimate : = "

;<= − 1

