No activity slide today! 😞
Announcements

Review Summary 2 due this Friday.

Programming question in HW 6.
The way we’ll evaluate the CDF of a normal is to:
1. convert to a standard normal
2. Round the “z-score” to the hundredths place.
3. Look up the value in the table.

It’s 2021, we’re using a table?

The table makes sure we have consistent rounding rules (makes it easier for us to debug with you).
You can’t evaluate this by hand – the “z-score” can give you intuition right away.
More Practice

Let $X \sim \mathcal{N}(3, 2)$

What is the probability of $1 \leq X \leq 4$?

\[
P(1 \leq X \leq 4) = P\left(\frac{1 - 3}{\sqrt{2}} \leq \frac{X - 3}{\sqrt{2}} \leq \frac{4 - 3}{\sqrt{2}}\right)
\]
\[
= P\left(-1.41 \leq \frac{X - 3}{\sqrt{2}} \leq 0.71\right)
\]
\[
= \Phi(0.71) - \Phi(-1.41)
\]
\[
= \Phi(0.71) - (1 - \Phi(1.41)) = 0.76115 - (1 - 0.92073) = 0.68188
\]
Why Learn Normals?

When we add together independent normal random variables, you get another normal random variable.

The sum of any independent random variables approaches a normal distribution.

Central Limit Theorem

Let $X_1, X_2, ..., X_n$ be i.i.d. random variables, with mean μ and variance σ^2. Let $Y_n = \frac{X_1 + X_2 + ... + X_n - n\mu}{\sigma\sqrt{n}}$

As $n \to \infty$, the CDF of Y_n converges to the CDF of $\mathcal{N}(0, 1)$
Breaking down the theorem

Central Limit Theorem

Let X_1, X_2, \ldots, X_n be i.i.d. random variables, with mean μ and variance σ^2. Let $Y_n = \frac{X_1 + X_2 + \cdots + X_n - n\mu}{\sigma \sqrt{n}}$.

As $n \to \infty$, the CDF of Y_n converges to the CDF of $\mathcal{N}(0, 1)$.

\[E[X] = E[\sum X_i] = n\mu \]
\[\text{Var}(X) = \text{Var}(\sum X_i) = n \sigma^2 \]
\[\text{std dev}(X) = \sqrt{\text{Var}(X)} = \sqrt{n} \sigma \]
Proof of the CLT?

No.

How is the proof done?

Step 1: Prove that for all positive integers k and $Z \sim \mathcal{N}(0,1)$,

$$\mathbb{E}[(Y_n)^k] \to \mathbb{E}[Z^k]$$

Step 2: Prove that if $\mathbb{E}[(Y_n)^k] = \mathbb{E}[Z^k]$ for all k then $F_{Y_n}(z) = F_Z(z)$

“Moment Generating Function”
"Proof by example"

The dotted lines show an "empirical pmf" – a pmf estimated by running the experiment a large number of times. The blue line is the normal rv that the CLT predicts.

Shown are $n = 1, 2, 3, 10$
“Proof by example” -- uniform

https://www.desmos.com/calculator/2n2m05a9km
A lot of real-world bell-curves can be explained as:

1. The random variable comes from a combination of independent factors.

2. The CLT says the distribution will become like a bell curve.

birthweight
Theory vs. Practice

The formal theorem statement is “in the limit”

You might not get exactly a normal distribution for any finite n (e.g. if you sum indicators, your random variable is always discrete and will be discontinuous for every finite n.

In practice, the approximations get very accurate very quickly (at least with a few tricks we’ll see soon).

They won’t be exact (unless the X_i are normals) but it’s close enough to use even with relatively small n.
Using the Central Limit Theorem

Suppose you are managing a factory, that produces widgets. Each widget produced is defective (independently) with probability 5%.

Your factory will produce 1000 (possibly defective) widgets. You want to know what the chances are of having a “very bad day” where “very bad” means producing at most 940 non-defective widgets. (In expectation, you produce 950 non-defective widgets)

What is the probability?
Let $X \sim \text{Bin}(1000, .95)$

What is $\mathbb{P}(X \leq 940)$?

The cdf is ugly...and that’s a big summation.

$$
\sum_{k=0}^{940} \binom{1000}{k} (0.95)^k \cdot (0.05)^{1000-k} \approx 0.08673
$$

What does the CLT give?
CLT setup

Bin(1000,.95) is the sum of a bunch of independent random variables (the indicators/Bernoullis we summed to get the binomial)

So, let’s use the CLT instead

\[\mathbb{E}[X_i] = p = 0.95. \]
\[\text{Var}(X_i) = p(1 - p) = 0.0475 \]
\[= \sigma^2(X_i) \]

\[Y_{1000} = \frac{\sum_{i=1}^{1000} X_i - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}} \] is approximately \(\mathcal{N}(0,1) \).
With the CLT.

The event we’re interested in is $\mathbb{P}(X \leq 940)$

$\mathbb{P}(X \leq 940)$

$= \mathbb{P}\left(\frac{X - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}} \leq \frac{940 - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}}\right)$

$= \mathbb{P}(Y_{1000} \leq \frac{940 - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}})$

$\approx \mathbb{P}(Y \leq \frac{940 - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}}) \text{ by CLT}$

$= \Phi\left(\frac{940 - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}}\right)$

$\approx \Phi(-1.45) = 1 - \Phi(1.45)$

$\approx 1 - 0.92647 = 0.07353.$
It’s an approximation!

The true probability is

\[1 - \sum_{k=941}^{1000} \binom{1000}{k} (0.95)^k \cdot (0.05)^{1000-k} \approx 0.08673 \]

The CLT estimate is off by about 1.3 percentage points.

We can get a better estimate if we fix a subtle issue with this approximation.
A problem

What’s the probability that $X = 950$? (exactly)

True value, we can get with binomial:

$$\binom{1000}{950} \cdot (0.95)^{950} \cdot (0.05)^{50} \approx 0.05779$$

What does the CLT say?

$$= \mathbb{P}\left(\frac{X - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}} = \frac{950 - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}} \right)$$

$$\approx \mathbb{P}(Y = 0)$$

$$= 0$$

Uh oh.
The binomial distribution is discrete, but the normal is continuous.
Let’s correct for that (called a “continuity correction”)

Before we switch from the binomial to the normal, ask “what values of a continuous random variable would round to this event?”

\[
P(X = 950)\quad x\text{ cannot be } 949.7
\]
\[
= P(949.5 \leq x \leq 950.5)
\]

\[
\text{Binom} \Rightarrow \{0, 1, 2, 3, 4, 5, \ldots\}
\]

\[
\text{Normal} \Rightarrow [0, \infty)
\]
\[
[0, 0.5) \rightarrow 0 \quad [0.5, 1.5) \rightarrow 1 \quad [1.5, 2.5) \rightarrow 2
\]
Applying the continuity correction

\[P(X = 950) = P(949.5 \leq X < 950.5) \]

Continuity correction. This is an "exactly equal to"
The discrete rv \(X \) can't equal 950.2.

\[
\begin{align*}
&= P \left(\frac{949.5 - 950}{\sqrt{1000 \cdot 0.0475}} \leq \frac{X - 950}{\sqrt{1000 \cdot 0.0475}} < \frac{950.5 - 950}{\sqrt{1000 \cdot 0.0475}} \right) \\
&\approx P \left(\frac{949.5 - 950}{\sqrt{1000 \cdot 0.0475}} \leq Y < \frac{950.5 - 950}{\sqrt{1000 \cdot 0.0475}} \right) \text{ By CLT} \\
&= \Phi \left(\frac{950.5 - 950}{\sqrt{1000 \cdot 0.0475}} \right) - \Phi \left(\frac{949.5 - 950}{\sqrt{1000 \cdot 0.0475}} \right) \\
&\approx \Phi(0.07) - \Phi(-0.07) = \Phi(0.07) - (1 - \Phi(0.07)) \\
&\approx 0.5279 - (1 - 0.5279) = 0.0558
\end{align*}
\]

0.0558 is very close
Still an Approximation

\[\binom{1000}{950} \cdot (0.95)^{950} \cdot (0.05)^{50} \approx 0.05779 \] is the true value.

The CLT approximates: 0.0558

Very close! But still not perfect.
Let’s fix that other one

Question was “what’s the probability of seeing at most \(940\) non-defective widgets?”

\[P \left(X \leq 940 \right) \]

\[= P \left(X \leq 940.5 \right) \]

\[= \Pr \left(\frac{X - 950}{\sqrt{1000 \cdot 0.0475}} < \frac{940.5 - 950}{\sqrt{1000 \cdot 0.0475}} \right) \]

\[= P \left(Y < \frac{940.5 - 950}{\sqrt{1000 \cdot 0.0475}} \right) \]
With the CLT.

The event we’re interested in is $\mathbb{P}(X \leq 940)$

\[
\mathbb{P}(X \leq 940) = \mathbb{P}\left(\frac{X - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}} \leq \frac{940 - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}}\right)
\approx \mathbb{P}\left(Y \leq \frac{940 - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}}\right) \text{ By CLT}
= \Phi\left(\frac{940 - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}}\right)
\approx \Phi(-1.45) = 1 - \Phi(1.45)
\approx 1 - 0.92647 = 0.07353.
\]

$\mathbb{P}(X \leq 940.5)$

\[
\mathbb{P}(X \leq 940.5) = \mathbb{P}\left(\frac{X - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}} \leq \frac{940.5 - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}}\right)
\approx \mathbb{P}\left(Y \leq \frac{940.5 - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}}\right) \text{ By CLT}
= \Phi\left(\frac{940.5 - 1000 \cdot 0.95}{\sqrt{1000 \cdot 0.0475}}\right)
\approx \Phi(-1.38) = 1 - \Phi(1.38)
\approx 1 - 0.91621 = 0.08379.
\]

True answer: 0.08673
Approximating a continuous distribution

You buy lightbulbs that burn out according to an exponential distribution with parameter of \(\lambda = 1.8 \) lightbulbs per year.

You buy a 10 pack of (independent) light bulbs. What is the probability that your 10-pack lasts at least 5 years?

Let \(X_i \) be the time it takes for lightbulb \(i \) to burn out.
Let \(X \) be the total time. Estimate \(\mathbb{P}(X \geq 5) \).

\[
X = X_1 + X_2 + \ldots + X_{10}
\]

\[
\text{Std dev } (X) = \sqrt{\frac{10}{1.8^2}}
\]

\[
E[X_i] = \frac{1}{1.8}
\]

\[
E[X] = \frac{10}{1.8}
\]

\[
\text{Var}(X_i) = \frac{1}{1.8^2}
\]

\[
\text{Var}(X) = \frac{10}{1.8^2}
\]
Where’s the continuity correction?

There’s no correction to make – it was already continuous!!

\[
P(X \geq 5)
= P\left(\frac{X - 10/1.8}{\sqrt{10/1.8^2}} \geq \frac{5 - 10/1.8}{\sqrt{10/1.8^2}} \right)
\approx P\left(Y \geq \frac{5 - 10/1.8}{\sqrt{10/1.8^2}} \right) \quad \text{By CLT}
\approx P(Y \geq -0.32)
= 1 - \Phi(-0.32) = \Phi(0.32)
\approx 0.62552
\]

True value (needs a distribution not in our zoo) is \(\approx 0.58741 \)
Outline of CLT steps

1. Write event you are interested in, in terms of sum of random variables.

2. Apply continuity correction if RVs are discrete.

3. Normalize RV to have mean 0 and standard deviation 1.

4. Replace RV with $\mathcal{N}(0,1)$.

5. Write event in terms of Φ.