
More Common Discrete 
RVs

CSE 312 Summer 21
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Announcements

Please sign up for small group discussion Office Hours for more help:

https://forms.gle/hkXnv1C2dHtBDFL58

I will make assignments sometime over the weekend. 
Fill this out by Friday.

Real World 1 due tonight! Q 1.2a info - Ed Post

Think of problems / concepts that you want to review during section.

There is a section “midterm review” handout for preparation!

https://forms.gle/hkXnv1C2dHtBDFL58
https://edstem.org/us/courses/6206/discussion/526786


Negative Binomial Distribution



Scenario: Negative Binomial 

You’re playing a carnival game, and there are 𝑟 little kids nearby who all 
want a stuffed animal. You can win a single game (and thus win one 
stuffed animal) with probability 𝑝 (independently each time) How many 
times will you need to play the game before every kid gets their toy?

More generally, run independent trials with probability 𝑝. How many 
trials do you need for 𝑟 successes?



Activity

More generally, run independent trials with probability 𝑝. How many 
trials do you need for 𝑟 successes?

What’s the pmf? 

What’s the expectation and variance? (hint: linearity)



Negative Binomial Analysis: PMF

What’s the pmf? Well, how would we know 𝑋 = 𝑘?

Of the first 𝑘 − 1 trials, 𝑟 − 1 must be successes. 
And trial 𝑘 must be a success.

That first part is a lot like a binomial!

It’s the 𝑝𝑌(𝑟 − 1) where 𝑌~Bin(𝑘 − 1, 𝑝)

First part gives 𝑘−1
𝑟−1

1 − 𝑝 𝑘−1−(𝑟−1)𝑝𝑟−1 = 𝑘−1
𝑟−1

1 − 𝑝 𝑘−𝑟𝑝𝑟−1

Second part, multiply by 𝑝

Total: 𝑝𝑋 𝑘 = 𝑘−1
𝑟−1

1 − 𝑝 𝑘−𝑟𝑝𝑟 𝑓𝑜𝑟 𝑘 ∈ ℤ, 𝑟 ≤ 𝑘



Negative Binomial Analysis: Expectation

What about the expectation?

To see 𝑟 successes:

We flip until we see success 1. 

Then flip until success 2.

… Flip until success 𝑟.

The total number of flips is…the sum of geometric random variables!



Negative Binomial Analysis: Expectation

Let 𝑍1, 𝑍2, … , 𝑍𝑟 be independent copies of Geo(𝑝)

𝑍𝑖 are called “independent and identically distributed” or “i.i.d.’

Because they are independent…and have identical pmfs.

𝑋~NegBin(𝑟, 𝑝) 𝑋 = 𝑍1 + 𝑍2 +⋯+ 𝑍𝑟 .

𝔼 𝑋 = 𝔼 𝑍1 + 𝑍2 +⋯𝑍𝑟 = 𝔼 𝑍1 + 𝔼 𝑍2 +⋯+ 𝔼 𝑍𝑟 = 𝑟 ⋅
1

𝑝



Negative Binomial Analysis: Variance

Let 𝑍1, 𝑍2, … , 𝑍𝑟 be independent copies of Geo(𝑝)

𝑋~NegBin(𝑟, 𝑝) 𝑋 = 𝑍1 + 𝑍2 +⋯+ 𝑍𝑟 .

Var 𝑋 = Var(𝑍1 + 𝑍2 +⋯+ 𝑍𝑟)

Up until now we’ve just used the observation that 𝑋 = 𝑍1 +⋯+ 𝑍𝑟 .

= Var 𝑍1 + Var 𝑍2 +⋯+ Var(𝑍𝑟) because the 𝑍𝑖 are independent.

= 𝑟 ⋅
1−𝑝

𝑝2



Negative Binomial

𝑋~NegBin(r, p)

Parameters: 𝑟: the number of successes needed, 𝑝 the probability of 
success in a single trial

𝑋 is the number of trials needed to get the 𝑟th success.

𝑝𝑋 𝑘 = 𝑘−1
𝑟−1

1 − 𝑝 𝑘−𝑟𝑝𝑟

𝐹𝑋(𝑘) is ugly, don’t bother with it.

𝔼 𝑋 =
𝑟

𝑝

Var X =
r 1−p

𝑝2



Hypergeometric Distribution



Scenario: Hypergeometric

You have an urn with 𝑁 balls, of which 𝐾 are purple. You are going to 
draw balls out of the urn without replacement.

If you draw out 𝑛 balls, what is the probability you see 𝑘 purple ones?



Hypergeometric: Analysis

You have an urn with 𝑁 balls, of which 𝐾 are purple. You are going to 
draw balls out of the urn without replacement.

If you draw out 𝑛 balls, what is the probability you see 𝑘 purple ones?

Of the 𝐾 purple, we draw out 𝑘. Choose which 𝑘 will be drawn

Of the 𝑁 − 𝐾 other balls, we will draw out 𝑛 − 𝑘, choose which (𝑛 − 𝑘)
will be drawn. 

Sample space all subsets of size 𝑛
𝐾
𝑘

𝑁−𝐾
𝑛−𝑘

𝑁
𝑛



Hypergeometric: Analysis

𝑋 = 𝐷1 + 𝐷2 +⋯+ 𝐷𝑛

Where 𝐷𝑖 is the indicator that draw 𝑖 is purple.

𝐷1 is 1 with probability 𝐾/𝑁.

What about 𝐷2?

ℙ 𝐷2 = 1 =
𝐾−1

𝑁−1
⋅
𝐾

𝑁
+

𝐾

𝑁−1
⋅
𝐾−𝑁

𝑁
=

𝐾 𝐾−𝑁+𝐾−1

𝑁 𝑁−1
=

𝐾

𝑁

In general, ℙ 𝐷𝑖 = 1 =
𝐾

𝑁

It might feel counterintuitive, but it’s true! 



Hypergeometric: Analysis

𝔼[𝑋]

= 𝔼 𝐷1 +⋯𝐷𝑛 = 𝔼 𝐷1 +⋯+ 𝔼 𝐷𝑛 = 𝑛 ⋅
𝐾

𝑁

Can we do the same for variance?

No! The 𝐷𝑖 are dependent. Even if they have the same probability. 



Hypergeometric Distribution

𝑋~HypGeo(𝑁, 𝐾, 𝑛)

Parameters: A total of 𝑁 balls in an urn, of which 𝐾 are successes. 
Draw 𝑛 balls without replacement.

𝑋 is the number of success balls drawn.

𝑝𝑋 𝑘 =
𝐾
𝑘

𝑁−𝐾
𝑛−𝑘

𝑁
𝑛

𝔼 𝑋 =
𝑛𝐾

𝑁

Var 𝑋 = 𝑛 ⋅
𝐾

𝑁
⋅
𝑁−𝐾

𝑁
⋅
𝑁−𝑛

𝑁−1



Poisson Distribution



The Poisson Distribution

A new kind of random variable.

We use a Poisson distribution when:

We’re trying to count the number of times something happens in some 
interval of time.

We know the average number that happen (i.e. the expectation)

Each occurrence is independent of the others. 

There are a VERY large number of “potential sources” for those events, 
few of which happen.



The Poisson Distribution

Classic applications:

How many traffic accidents occur in Seattle in a day?

How many major earthquakes occur in a year (not including 
aftershocks)?

How many customers visit a bakery in an hour?

Why not just use counting coin flips? 

What are the flips…the number of cars? Every person who might visit 
the bakery? There are way too many of these to count exactly or think 
about dependency between. But a Poisson might accurately model 
what’s happening.



It’s a model

By modeling choice, we mean that we’re choosing math that we think 
represents the real world as best as possible

Is every traffic accident really independent? 

Not really, one causes congestion, which causes angrier drivers. Or both 
might be caused by bad weather/more cars on the road. 

But we assume they are (because the dependence is so weak that the 
model is useful). 



Poisson Distribution

𝑋~Poi(𝜆)

Let 𝜆 be the average number of incidents in a time interval. 

𝑋 is the number of incidents seen in a particular interval.

Support ℕ

𝑝𝑋 𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!
(for 𝑘 ∈ ℕ)

𝐹𝑋 𝑘 = 𝑒−𝜆 σ𝑖=0
⌊𝑘⌋ 𝜆𝑖

𝑖!

𝔼 𝑋 = 𝜆

Var 𝑋 = 𝜆



Some Sample PMFs
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Let’s take a closer look at that pmf

𝑝𝑋 𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!
(for 𝑘 ∈ ℕ)

If this is a real PMF, it should sum to 1. 
Let’s check that to understand the PMF a little better.

σ𝑘=0
∞ 𝜆𝑘𝑒−𝜆

𝑘!

= 𝑒−𝜆 σ𝑘=0
∞ 𝜆𝑘

𝑘!

Taylor Series for  𝑒𝑥


𝑘=0

∞ 𝑥𝑘

𝑘!
= 𝑒𝑥

= 𝑒−𝜆𝑒𝜆 = 𝑒0 = 1



Let’s check something…the expectation

𝔼 𝑋 = σ𝑘=0
∞ 𝑘 ⋅ 𝑒−𝜆

𝜆𝑘

𝑘!

= σ𝑘=1
∞ 𝑘 ⋅ 𝑒−𝜆

𝜆𝑘

𝑘!
first term is 0. 

= σ𝑘=1
∞ 𝑒−𝜆

𝜆𝑘

(𝑘−1)!
cancel the 𝑘.

= 𝜆σ𝑘=1
∞ 𝑒−𝜆

𝜆𝑘−1

(𝑘−1)!
factor out 𝜆.

= 𝜆σ𝑗=0
∞ 𝑒−𝜆

𝜆𝑗

(𝑗)!
Define 𝑗 = 𝑘 − 1

= 𝜆 ⋅ 1 The summation is just the pmf!



Where did this expression come from?

For the cars we said, “it’s like every car in Seattle independently might 
cause an accident.”

If we knew the exact number of cars, and they all had identical 
probabilities of causing an accident…

It’d be just like counting the number of heads in 𝑛 flips of a bunch of 
coins (the coins are just VERY biased).

The Poisson is a certain limit as 𝑛 → ∞ but 𝑛𝑝 (the expected number of 
accidents) stays constant. 



Zoo! 

𝒑𝑿 𝒌 =
𝟏

𝒃 − 𝒂 + 𝟏

𝔼 𝑿 =
𝒂 + 𝒃

𝟐

𝐕𝐚𝐫 𝑿 =
𝒃 − 𝒂 𝒃 − 𝒂 + 𝟐

𝟏𝟐

𝑿~𝐔𝐧𝐢𝐟(𝒂, 𝒃)

𝒑𝑿 𝒌 = 𝟏 − 𝒑 𝒌−𝟏𝒑

𝔼 𝑿 =
𝟏

𝒑

𝐕𝐚𝐫 𝑿 =
𝟏 − 𝒑

𝒑𝟐

𝑿~𝐆𝐞𝐨(𝒑)

𝒑𝑿 𝟎 = 𝟏 − 𝒑;
𝒑𝑿 𝟏 = 𝒑

𝔼 𝑿 = 𝒑

𝐕𝐚𝐫 𝑿 = 𝒑(𝟏 − 𝒑)

𝑿~𝐁𝐞𝐫(𝒑)

𝒑𝑿 𝒌 =
𝒌 − 𝟏

𝒓 − 𝟏
𝒑𝒓 𝟏 − 𝒑 𝒌−𝒓

𝔼 𝑿 =
𝒓

𝒑

𝐕𝐚𝐫 𝑿 =
𝒓(𝟏 − 𝒑)

𝒑𝟐

𝑿~𝐍𝐞𝐠𝐁𝐢𝐧(𝒓, 𝒑)

𝒑𝑿 𝒌 =
𝒏

𝒌
𝒑𝒌 𝟏 − 𝒑 𝒏−𝒌

𝔼 𝑿 = 𝒏𝒑

𝐕𝐚𝐫 𝑿 = 𝒏𝒑(𝟏 − 𝒑)

𝑿~𝐁𝐢𝐧(𝒏, 𝒑)

𝒑𝑿 𝒌 =

𝑲
𝒌

𝑵−𝑲
𝒏−𝒌

𝑵
𝒏

𝔼 𝑿 = 𝒏
𝑲

𝑵

𝐕𝐚𝐫 𝑿 =
𝑲(𝑵 − 𝑲)(𝑵 − 𝒏)

𝑵𝟐(𝑵 − 𝟏)

𝑿~𝐇𝐲𝐩𝐆𝐞𝐨(𝑵,𝑲, 𝒏)

𝒑𝑿 𝒌 =
𝝀𝒌𝒆−𝝀

𝒌!

𝔼 𝑿 = 𝝀

𝐕𝐚𝐫 𝑿 = 𝝀

𝑿~𝐏𝐨𝐢(𝝀)



Zoo Takeaways

You can do relatively complicated counting/probability calculations 
much more quickly than you could week 1!

You can now explain why your problem is a zoo variable and save 
explanation on homework (and save yourself calculations in the future).

Don’t spend extra effort memorizing…but be careful when looking up 
Wikipedia articles.
The exact definitions of the parameters can differ (is a geometric random variable 
the number of failures before the first success, or the total number of trials 
including the success?)



Reviewing what we have learned



What have we done over the past 5 weeks?

Counting
Combinations, permutations, indistinguishable elements, starts and bars, inclusion-
exclusion…

Probability foundations
Events, sample space, axioms of probability, expectation, variance

Conditional probability
Conditioning, independence, Bayes’ Rule

Refined our intuition
Especially around Bayes’ Rule



What’s next?

Continuous random variables.
So far our sample spaces have been countable. What happens if we want to choose 
a random real number?

How do expectation, variance, conditioning, etc. change in this new context?

Mostly analogous to discrete cases, but with integrals instead of sums.

Analysis when it’s inconvenient (or impossible) to exactly calculate 
probabilities.
Central Limit Theorem (approximating discrete distributions with continuous ones)

Tail Bounds/Concentration (arguing it’s unlikely that a random variable is far from its 
expectation)

A first taste of making predictions from data (i.e., a bit of ML)



More Practice



Practice: Poisson

Seattle averages 3 days with snowfall per year. 

Suppose that the number of days with snow follows a Poisson 
distribution. What is the probability of getting exactly 5 days of snow?

According to the Poisson model, what is the probability of getting 367 
days of snow?



Practice: Poisson

Let 𝑋~Poi(3).

𝑝𝑋 5 =
35𝑒−3

5!
≈ .1008

Or about once a decade.

Probability of 367 snowy days, err…

The distribution says

𝑝𝑋 367 ≈ 1.8x10−610.

Definition of a “year” says probability should be 0.



Practice Problem: Coin Flips

There are two coins, heads up, on a table in front of you. One is a trick 
coin – both sides are heads. The other is a fair coin. 

You are allowed 2 coin flips (total between the two coins) to figure out 
which coin is which. What is your strategy? What is the probability of 
success?



Flip each once

With probability 1 when we flip the trick coin it shows heads.

With probability ½ the fair coin shows tails, and we know it’s the fair 
one.

With probability ½, both the coins were heads and we have learned 
nothing. So, we have a ½ chance of guessing which is which.

1

2
⋅ 1 +

1

2
⋅
1

2
=

3

4
chance of success



Flip one twice.

Now flip the same coin twice. 

We’ll see a tails with probability 
1

2
⋅
3

4
=

3

8

If we don’t see a tails, just guess the other one? What’s our probability 
of guessing right? Let 𝑇 be the event “we’re flipping the trick coin” 𝑁 be 
the event we saw no tails

ℙ 𝑇 𝑁 =
ℙ(𝑁|𝑇)ℙ 𝑇

ℙ(𝑁)
=

1⋅
1

2

1⋅
1

2
+
1

4
⋅
1

2

=
4

5

Guess right: 1 ⋅
3

8
+

4

5
⋅
5

8
=

7

8
Better to flip the same coin twice!



Practice Problem: Donuts

You are buying at most 7 donuts (could be 0, could be 1,…, could be 7). 

There are chocolate, strawberry, and vanilla donuts. 

How many different orders could you make – give a simple formula!



Donuts: Approach 1

Use the sum rule over the possible numbers of donuts. 

For 𝑛 donuts, by the stars and bars formula there are 𝑛+3−1
3−1

So we have σ𝑛=0
7 𝑛+3−1

3−1
correct. But not simple yet…

Use pascal’s rule. Rewrite 2
2

as 3
3

We’ll get 𝑗
2
+ 𝑗

3
= 𝑗+1

3
, that can combine with 𝑗+1

2
until you get

7+3−1+1
3

= 10
3



Donuts: Approach 2

Clever way: a fourth type of donut: the don’t-buy-one donut.

Then we’re buying exactly seven donuts of the four types (chocolate, 
strawberry, vanilla, don’t-buy-one)

By stars and bars 7+4−1
4−1

= 10
3

.


