
Randomized Algorithms CSE 312 Spring 21

Lecture 28



Announcements

Three Concept checks this week (to get to a total of 30)

Concept Check 28 is a “standard” one for today’s lecture

Concept Check 29 asks you to fill out the official UW course evals.
Please fill these out! It’s super useful to know what you found valuable, what you 
found frustrating, what took too long,…we are always working to improve the 
course.

Concept Check 30 asks you to fill out a different anonymous form with
specific feedback about the real world assignments.

They were new this quarter – asking about logistics (e.g., would you 
rather have had these as part of regular homeworks like the 
programming or as separate work like we did?), for any examples to 
add to suggested lists (like in real world 1/2), etc.



Final Logistics

What’s Fair Game?

All the content/theorems we learned.

Principles behind the programming questions, but not the code itself.

Applications lectures won’t be tested directly (that is to say we won’t give you
a problem that would only make sense if you followed the application 
lectures.

But the principles behind the applications are absolutely fair game.

And we reserve the right to give a problem inspired by the applications
lectures, as long as you could do it even if you didn’t see the applications.

E.g. we could ask a question about covariance (because you know the 
formula from main lectures) but we wouldn’t ask you to think about the ML 
implications of a picture of covariances.



What’s a randomized algorithm?

A randomized algorithm is an algorithm that uses randomness in the 
computation.

Well, ok.

Let’s get a little more specific.



Two common types of algorithms

Las Vegas Algorithm

Always tells you the right answer

Takes varying amounts of time.

Monte Carlo Algorithm

Usually tells you the right answer. 



A classic Las Vegas Algorithm

Remember Quick Sort?
Pick a “pivot” element

Move all the elements smaller than the pivot to the left subarray (in no particular 
order)

Move all elements greater than the pivot element to the right subarray (in no
particular order)

Make a recursive call 

It’s sometimes implemented as a Las Vegas Algorithm.

That is, you’ll always get the same answer (there’s only one sorted array)
but the time can vary.



Quick Sort
0 1 2 3 4 5 6

20 50 70 10 60 40 30

0 1 2 3 4

50 70 60 40 30

0

10

0 1

40 30

0 1

70 60

0

30

0

60

0 1

30 40

0 1

60 70

0 1 2 3 4

30 40 50 60 70

0 1 2 3 4 5 6

10 20 30 40 50 60 70

https://www.youtube.com/watch?v=ywWBy6J5gz8

https://www.youtube.com/watch?v=ywWBy6J5gz8


How long does it take?

About 𝑛
levels

…

𝑂(𝑖) work when 𝑖 elements remaining.

Total time:

෍

𝑖=1

𝑛

𝑖 = 𝑂(𝑛2)

Well…it depends on what pivots you pick. 



For Simplicity

We’ll talk about how quicksort is really done at the end.

For now an easier-to-analyze version:

if(elements remaining > 1)

pick a pivot uniformly at random

split based on pivot

sortedLeft = QuickSort(left half)

sortedRight = QuickSort(right half)

return (sortedLeft pivot sortedRight)



What leads to a good time?

Cut in 

half is 

ideal.

𝑂(log 𝑛)
levels.

𝑂(𝑖) work when 𝑖 elements remaining. -- 𝑂(𝑛) per level

Pivots closer to the middle would be better.



Work at each level

How much work do those splits do?

Each call choose a pivot (𝑂(𝑛) total per level)

Each element is compared to the pivot and possibly swapped (𝑂(1) per 
element so 𝑂(𝑛) per level)

So as long as we need at most 𝑂(log 𝑛) levels, we’ll get the 
𝑂(𝑛 log 𝑛) running time we need.

We only get the perfect pivot with probability 
1

𝑛
. That’s not very 

likely…maybe we can settle for something more likely.



Focus on an element

Let’s focus on one element of the array 𝑥𝑖 .

The recursion will stop when every element is all alone in their own 
subarray. 

Call an iteration “good for 𝑥𝑖” if the array containing 𝑥𝑖 in the next step 

is at most 
3

4
the size it was in the current step.

Pivot here: might leave 𝑥𝑖 in 

a big subarray (if 𝑥𝑖 is big)

Pivot here: might leave 𝑥𝑖 in a 

big subarray (if 𝑥𝑖 is small)

Pivot here: both subarrays ≤ 3/4 size. 

Must be good for 𝑥𝑖. 



Good for 𝑥𝑖

At least half of the potential pivots guarantee 𝑥𝑖 ends up with a good 
iteration. So we’ll use ℙ 𝑥𝑖 good iteration ≥ 1/2

It’s actually quite a bit more than half for large arrays – one of the two 
red subarrays might be good for 𝑥𝑖 (just bad for the others in the array)

𝑥𝑖 might be our pivot, in which case it’s totally done. 

To avoid any tedious special cases for small arrays, just say at least ½.



How many levels?

How many levels do we need to go? 

Once 𝑥𝑖 is in a size 1 subarray, it’s done. How many iterations does it 
take? 

If we only had good iterations, we’d need

3

4

𝑘
𝑛 ≤ 1 ⇒ 𝑛 ≤

4

3

𝑘
⇒ 𝑘 ≥ log4/3 𝑛.

I want (at the end of our process) to say with probability at least <blah> 
the running time is at most 𝑂(𝑛 log 𝑛).
What’s the probability of getting a lot of good iterations…what’s the tool 
we should use? Fill out the poll everywhere so Robbie 

knows how long to explain

Go to pollev.com/cse312



Needed iterations

𝑥𝑖 is done after log4/3 𝑛 =
ln 𝑛

ln
4

3

≤ 4 ln 𝑛 good for 𝑥𝑖 iterations.

Let’s imagine we do 24 ln(𝑛) iterations. Let 𝑋 be the number of good 

for 𝑥𝑖 iterations. Let 𝑌~𝐵𝑖𝑛 24 ln 𝑛 ,
1

2

ℙ(𝑋 ≤ 4 ln 𝑛) ≤ℙ(𝑌 ≤ 4 ln 𝑛)

Set up for Chernoff

ℙ 𝑌 ≤ 1 − 𝛿 ⋅
24 ln 𝑛

2
≤ exp −

𝛿2𝜇

2

1 − 𝛿 = 1/3 ⇒ 𝛿 = 2/3



Applying Chernoff

ℙ 𝑌 ≤ 1 − 𝛿 ⋅
24 ln 𝑛

2
≤ exp −

𝛿2𝜇

2
≤ exp −

1

32
⋅12 ln 𝑛

2
= 𝑒−

8

3
⋅ln(𝑛)

So, the probability that 𝑥𝑖 is not done after 24 ln(𝑛) iterations is at most 
𝑒−8ln(𝑛)/3 = 𝑛−8/3



Finishing The bound

So 𝑥𝑖 is done with probability at least 1 − 𝑛−8/3

But 𝑥𝑖 being done doesn’t mean the whole algorithm is done…

This argument so far does apply to any other 𝑥𝑗 -- but they aren’t 
independent, so….union bound!

ℙ(algorithm not done)≤ ∑ℙ(𝑥𝑖 done)= 𝑛ℙ(𝑥𝑖 done)= 𝑛 ⋅ 𝑛−
8

3 = 𝑛−5/3

ℙ(algorithm done)> 1 − 𝑛−5/3. 



The Theorem

This kind of bound (with probability → 1 as 𝑛 → ∞ is called a “high 
probability bound” we say quicksort needs 𝑂(𝑛 log 𝑛) time “with high 
probability” 

Better than finding a bound on the expected running time!

With probability at least 1 −
1

𝑛
, Quicksort runs in time 𝑶(𝒏 ⋅ 𝒍𝒐𝒈 𝒏)

Quicksort



Want a different bound?

Want an even better probability? You just have to tweak the constant 
factors!

Be more careful in defining a “good iteration” or just change 24 ln(𝑛) to 
48 ln(𝑛) or 100 ln(𝑛). 

It all ends up hidden in the big-O anyway. 

That’s the power of concentration – the constant coefficient affects the 
exponent of the probability. 



Common Quicksort Implementations

A common strategy in practice is the “median of three” rule.

Choose three elements (either at random or from specific spots). Take 
the median of those for your pivot

Guarantees you don’t have the worst possible pivot.

Only a small constant number of extra steps beyond the fixed pivot (find
the median of three numbers is just a few comparisons).

Another strategy: find the true median (very fancy, very impractical: take 
421) 



Algorithms with some probability of failure

There are also algorithms that sometimes give us the wrong answer. 
(Monte Carlo Algorithms)

Wait why would we accept a probability of failure?

Suppose your algorithm succeeds with probability only 1/𝑛.

But given two runs of the algorithm, you can tell which is better.

E.g. “find the biggest <blah>” – whichever is bigger is the better one.

How many independent runs of the algorithm do we need to get the 
right answer with high probability?



Small Probability of Failure

How many independent runs of the algorithm do we need to get the 
right answer with high probability?

Probability of failure

1 −
1

𝑛

𝑘⋅𝑛
≤ 𝑒−𝑘

Choose 𝑘 ≈ ln(𝑛), and we get high probability of success.

So 𝑛 ⋅ ln(𝑛) (for example) independent runs gives you the right answer 
with high probability.

Even with very small chance of success, a moderately larger number of 
iterations gives high probability of success. Not a guarantee, but close 
enough to a guarantee for most purposes.


