
Hodgepodge CSE 312 Spring 21

Lecture 27



Announcements

Monday is a holiday, we’re listing changed office hours on a pinned Ed 
post. 

Remember to find groups for the final (unless you want to work alone,
of course). Ed post up – also consider filling out if you’re a group of two 
and want a third person. 

We’ve made it through the core content!
Today we’re revisiting some old topics

Wednesday is an application lecture (probability and algorithms)

Friday will be a “victory lap” (wrap up the course/put it into context of what comes 
next/answer lingering questions).

Concept checks for this week due Tuesday (because of holiday)



Today

Cover a topic or two that you got a small taste of, but show up much 
more frequently in ML.

Random Vectors

More on Covariance

Multidimensional Guassians

More on Conditioning



Preliminary: Random Vectors

In ML, our data points are often multidimensional.

For example: 

To predict housing prices, each data point might have: number of 
rooms, number of bathrooms, square footage, zip code, year built, …

To make movie recommendations, each data point might have: ratings 
of existing movies, whether you started a movie and stopped after 10 
minutes,…

A single data point is a full vector



Preliminary: Random Vector

A random vector 𝑋 is a vector where each entry is a random variable.

𝔼[𝑋] is a vector, where each entry is the expectation of that entry. 

For example, if 𝑋 is a uniform vector from the sample space 
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Covariance Matrix

Remember Covariance?

Cov 𝑋, 𝑌 = 𝔼 (𝑋 − 𝔼[𝑋])(𝑌 − 𝔼 𝑌 ) = 𝔼 𝑋𝑌 − 𝔼[𝑋]𝔼[𝑌]

We’ll want to talk about covariance between entries:

Define the “covariance matrix” 

Σ =

Cov(𝑋1, 𝑋1) ⋯ Cov(𝑋1, 𝑋𝑛)
⋮ Cov(𝑋𝑖 , 𝑋𝑗) ⋮

Cov(𝑋𝑛, 𝑋1) ⋯ Cov(𝑋𝑛, 𝑋𝑛)



Covariance

Let’s think about 2 dimensions.

Let 𝑋 = 𝑋1, 𝑋2
𝑇 where 𝑋𝑖~𝒩(0,1) and 𝑋1 and 𝑋2 are independent.

What is Σ? Which of these pictures are 200 i.i.d. samples of 𝑋?



Covariance

Let’s think about 2 dimensions.

Let 𝑋 = 𝑋1, 𝑋2
𝑇 where 𝑋𝑖~𝒩(0,1) and 𝑋1 and 𝑋2 are independent.

What is Σ? Which of these pictures are 200 i.i.d. samples of 𝑋?

Σ =
1 0
0 1



Unequal Variances, Still Independent

Let’s think about 2 dimensions.

Let 𝑋 = 𝑋1, 𝑋2
𝑇 where 𝑋1~𝒩(0,5), 𝑋2~𝒩(0,1) and 𝑋1 and 𝑋2 are 

independent.

What is Σ? Which of these pictures are i.i.d. samples of 𝑋?



Unequal Variances, Still Independent

Let’s think about 2 dimensions.

Let 𝑋 = 𝑋1, 𝑋2
𝑇 where 𝑋1~𝒩(0,5), 𝑋2~𝒩(0,1) and 𝑋1 and 𝑋2 are 

independent.

What is Σ? Which of these pictures are i.i.d. samples of 𝑋?

Σ =
5 0
0 1



What about dependence.

When we introduce dependence, we need to know the mean vector 
and the covariance matrix to define the distribution

(instead of just the mean and the variance).

Let’s see a few examples…



Dependence

Let’s think about 2 dimensions.

Let 𝑋 = 𝑋1, 𝑋2
𝑇 where Var 𝑋1 = 1, Var 𝑋2 = 1 BUT 𝑋1 and 𝑋2 are 

dependent. Cov 𝑋1, 𝑋2 = 5

What is Σ? Which of these pictures are i.i.d. samples of 𝑋?



Dependence

Let’s think about 2 dimensions.

Let 𝑋 = 𝑋1, 𝑋2
𝑇 where Var 𝑋1 = 1, Var 𝑋2 = 1 BUT 𝑋1 and 𝑋2 are 

dependent. Cov 𝑋1, 𝑋2 = 5

What is Σ? Which of these pictures are i.i.d. samples of 𝑋?

Σ =
1 5
5 1



Dependence

Let’s think about 2 dimensions.

Let 𝑋 = 𝑋1, 𝑋2
𝑇 where 𝑉𝑎𝑟(𝑋1) = 1, Var 𝑋2 = 1 BUT 𝑋1 and 𝑋2 are 

dependent. Cov 𝑋1, 𝑋2 = −3

What is Σ? Which of these pictures are i.i.d. samples of 𝑋?



Dependence

Let’s think about 2 dimensions.

Let 𝑋 = 𝑋1, 𝑋2
𝑇 where 𝑉𝑎𝑟(𝑋1) = 1, Var 𝑋2 = 1 BUT 𝑋1 and 𝑋2 are 

dependent. Cov 𝑋1, 𝑋2 = −3

What is Σ? Which of these pictures are i.i.d. samples of 𝑋?

Σ =
1 −3

−3 1



Using the Covariance Matrix

What were those ellipses in those datasets?

How do we know how many standard deviations from the mean a 2D 
point is, for the independent, variance 1 ones

Well (𝑥1 − 𝔼 𝑋1 ) is the distance from 𝑥 to the center in the 𝑥-direction.

And (𝑥2 − 𝔼 𝑥2 ) is the distance from 𝑥 to the center in the 𝑦-direction.

So the number of standard deviations is 𝑥1 − 𝔼 𝑋1
2 + 𝑥2 − 𝔼 𝑥2

2

That’s just the distance! 

In general, the major/minor axes of those ellipses were the eigenvectors 
of the covariance matrix. And the associated eigenvalues tell you how 
the directions should be weighted.



Probability and ML

You’re going to do a lot of conditional expectations, let’s talk about 
why…

Many problems in ML: Given a bunch of data points, you’ll find a 
function 𝑓 that you hope will predict future points well. 

We usually assume there is some true distribution 𝒟 of data points (e.g. 
all theoretical possible houses and their prices). 

You get a dataset 𝑆 that you assume was sampled from 𝒟 to find 𝑓𝑆

𝑓𝑆 is a lot like an MLE – it depends on the data, so before you knew 
what 𝑆 was, 𝑓 was a random variable. You then want to figure out what 
the true error is if you knew 𝒟.



Probability and ML

But 𝒟 is a theoretical construct. What can we do instead? Get a second 
dataset 𝑇 drawn from 𝒟 (drawn independently of 𝑆)

(or actually save part of your database before you start). 

Then 𝔼𝒟 error of 𝑓 = 𝔼𝑇 error of 𝑓𝑆 𝑆

But how confident can you be? You’ll make confidence intervals

(statements like the true error is within 5% of our estimate with 
probability at least .9) using concentration inequalities.



Practice with conditional expectations

Consider of the following process:

Flip a fair coin, if it’s heads, pick up a 4-sided die; if it’s tails, pick up a 6-
sided die (both fair)

Roll that die independently 3 times. Let 𝑋1, 𝑋2, 𝑋3 be the results of the 
three rolls.

What is 𝔼[𝑋2]? 𝔼[𝑋2|𝑋1 = 5]? 𝔼[𝑋2|𝑋3 = 1]?



Using conditional expectations

Let 𝐹 be the event “the four sided die was chosen”

𝔼 𝑋2 = ℙ(𝐹)𝔼 𝑋2 𝐹 + ℙ ത𝐹 𝔼 𝑋2
ത𝐹

=
1

2
⋅ 2.5 +

1

2
⋅ 3.5 = 3

𝔼[𝑋2|𝑋1 = 5] event 𝑋1 = 5 tells us we’re using the 6-sided die.

𝔼 𝑋2 𝑋1 = 5 = 3.5

𝔼[𝑋2|𝑋3 = 1] We aren’t sure which die we got, but…is it still 50/50?



Setup

Let 𝐸 be the event “𝑋3 = 1“

ℙ 𝐸 =
1
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6
+
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24

ℙ 𝐹 𝐸 =
ℙ 𝐸|𝐹 ⋅ℙ(𝐹)

ℙ(𝐸)

=
1

4
⋅
1
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ℙ ത𝐹 𝐸 =
ℙ(𝐸| ത𝐹)⋅ℙ( ത𝐹)

ℙ(𝐸)
=

1

6
⋅
1

2

5/24
=

2

5
(we could also get this with LTP, but it’s 

good confirmation)



Analysis

𝔼 𝑋2 𝑋3 = 1 = ℙ 𝐹|𝑋3 = 1 𝔼 𝑋2 𝑋3 = 1 ∩ 𝐹 + ℙ ത𝐹|𝑋3 = 1 𝔼 𝑋2 𝑋3 = 1 ∩ ത𝐹

Wait what?

This is the LTE, applied in the space where we’ve conditioned on 𝑋3 = 1.

Everything is conditioned on 𝑋3 = 1. Beyond that conditioning, it’s LTE.

=
3

5
⋅ 2.5 +

2

5
⋅ 3.5 = 2.9.

A little lower than the unconditioned expectation. Because seeing a 1 
has made it ever so slightly more probable that we’re using the 4-sided 
die.


