New stides posted ~ 30 seconds ago

#### Announcements

Monday is a holiday, we're listing changed office hours on a pinned Ed post.

Remember to find groups for the final (unless you want to work alone, of course). Ed post up – also consider filling out if you're a group of two and want a third person.

We've made it through the core content!

Today we're revisiting some old topics

Wednesday is an application lecture (probability and algorithms)

Friday will be a "victory lap" (wrap up the course/put it into context of what comes next/answer lingering questions).

Concept checks for this week due Tuesday (because of holiday)

## Today

Cover a topic or two that you got a small taste of, but show up much more frequently in ML.

Random Vectors

More on Covariance

Multidimensional Guassians

More on Conditioning

#### Preliminary: Random Vectors

In ML, our data points are often multidimensional.

For example:

To predict housing prices, each data point might have: number of rooms, number of bathrooms, square footage, zip code, year built, ...

To make movie recommendations, each data point might have: ratings of existing movies, whether you started a movie and stopped after 10 minutes,...

A single data point is a full vector

# Preliminary: Random Vector

A random vector *X* is a vector where each entry is a random variable.

 $\mathbb{E}[X]$  is a vector, where each entry is the expectation of that entry.

For example, if X is a uniform vector from the sample space

$$\begin{cases}
\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 6 \end{bmatrix} \\
\mathbb{E}[X] = [0,2,4]^T$$

#### Covariance Matrix

Remember Covariance?

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

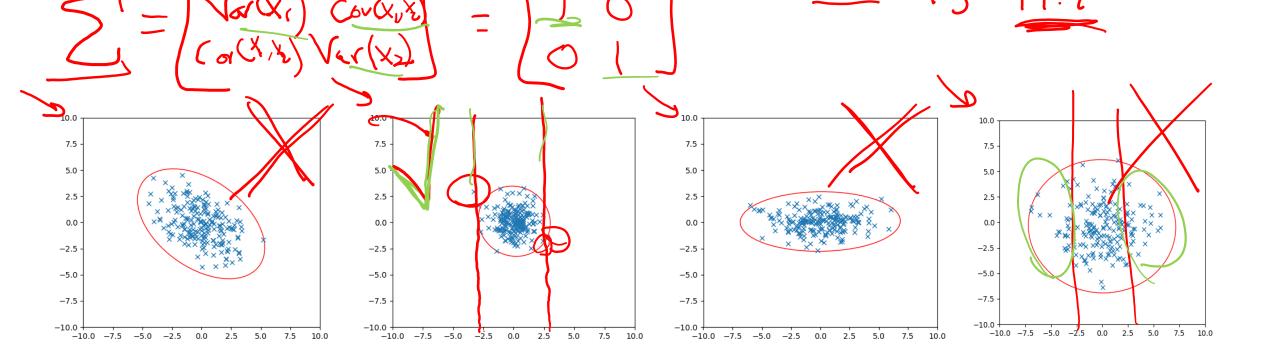
We'll want to talk about covariance between entries:

Define the "covariance matrix"  $\Sigma = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \cdots & \operatorname{Cov}(X_1, X_n) \\ \vdots & \operatorname{Cov}(X_i, X_j) & \vdots \\ \operatorname{Cov}(X_n, X_1) & \cdots & \operatorname{Cov}(X_n, X_n) \end{bmatrix}$   $\Sigma = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \cdots & \operatorname{Cov}(X_n, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_n, X_n) & \cdots & \operatorname{Cov}(X_n, X_n) \end{bmatrix}$ 

#### Covariance

Let's think about 2 dimensions. E(X) (E(X)); 0

Let  $X = [X_1, X_2]^T$  where  $X_i \sim \mathcal{N}(0,1)$  and  $X_1$  and  $X_2$  are independent.



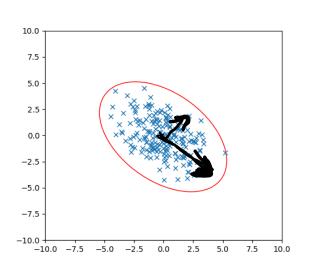
#### Covariance

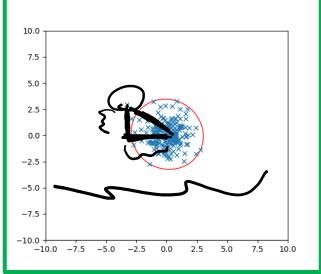


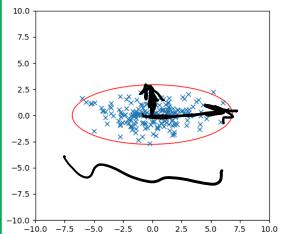
Let's think about 2 dimensions.

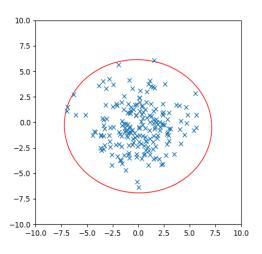
Let  $X = [X_1, X_2]^T$  where  $X_i \sim \mathcal{N}(0,1)$  and  $X_1$  and  $X_2$  are independent. What is  $\Sigma$ ? Which of these pictures are 200 i.i.d. samples of X?

$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$







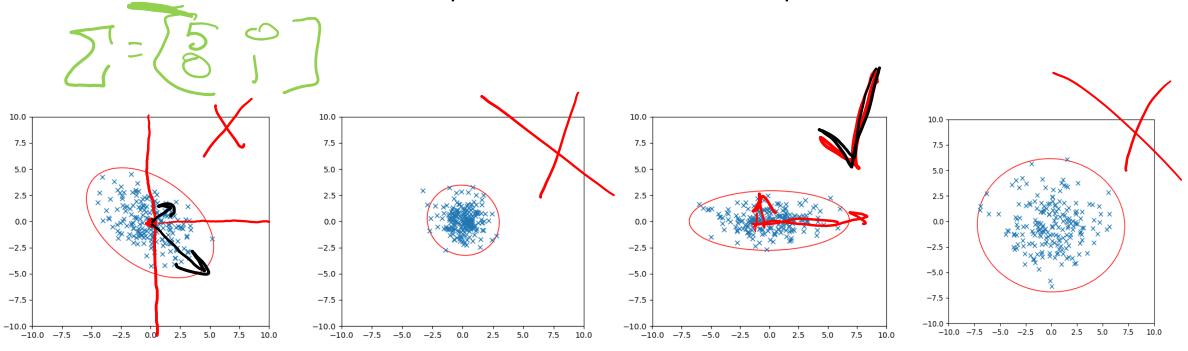


#### Unequal Variances, Still Independent

Let's think about 2 dimensions.

pollev.com/se312

Let  $X = [X_1, X_2]^T$  where  $X_1 \sim \mathcal{N}(0,5)$ ,  $X_2 \sim \mathcal{N}(0,1)$  and  $X_1$  and  $X_2$  are independent.

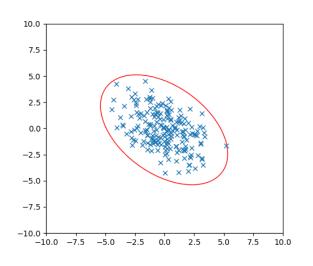


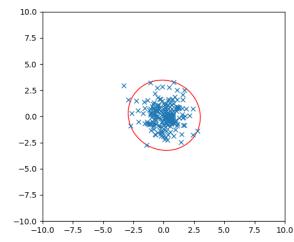
#### Unequal Variances, Still Independent

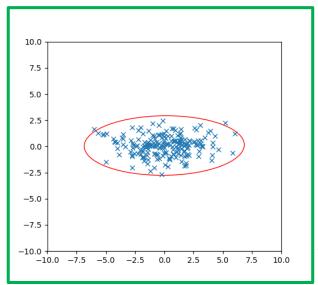
Let's think about 2 dimensions.

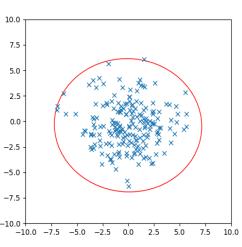
Let  $X = [X_1, X_2]^T$  where  $X_1 \sim \mathcal{N}(0,5)$ ,  $X_2 \sim \mathcal{N}(0,1)$  and  $X_1$  and  $X_2$  are independent.

$$\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}$$









#### What about dependence.

When we introduce dependence, we need to know the mean vector and the covariance matrix to define the distribution

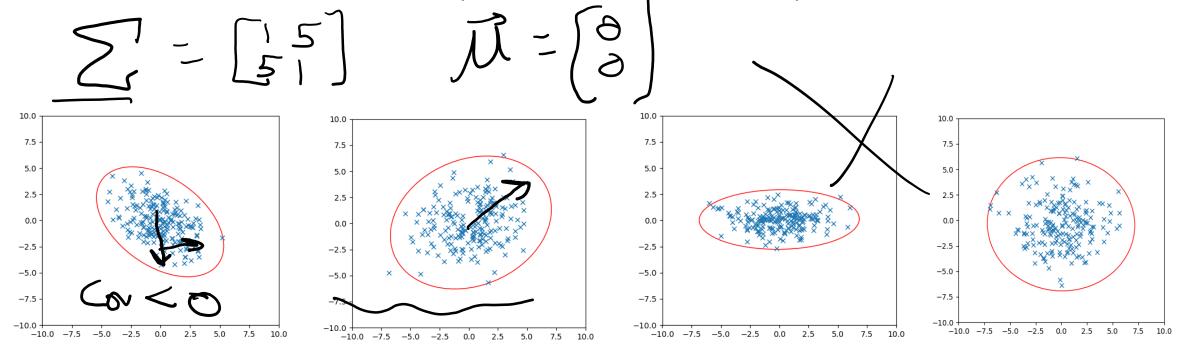
(instead of just the mean and the variance).  $\mathcal{N}(\mu, \sigma^2)$ 



Let's see a few examples...

Let's think about 2 dimensions.

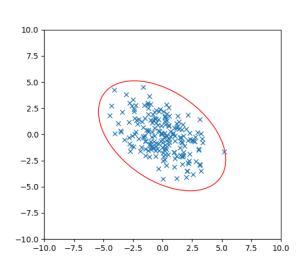
Let  $X = [X_1, X_2]^T$  where  $Var(X_1) = 1$ ,  $Var(X_2) = 1$  BUT  $X_1$  and  $X_2$  are dependent.  $Cov(X_1, X_2) = 5$ 

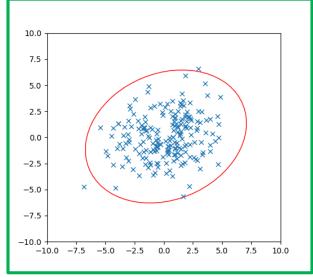


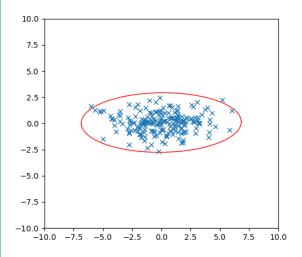
Let's think about 2 dimensions.

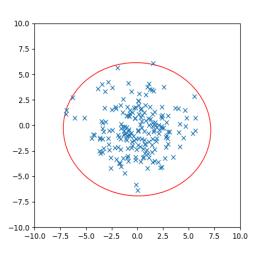
Let  $X = [X_1, X_2]^T$  where  $Var(X_1) = 1$ ,  $Var(X_2) = 1$  BUT  $X_1$  and  $X_2$  are dependent.  $Cov(X_1, X_2) = 5$ 

$$\Sigma = \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$$



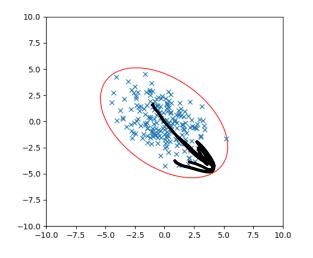


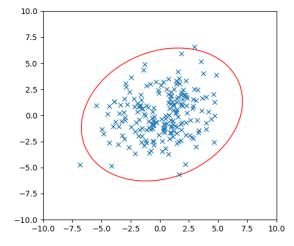


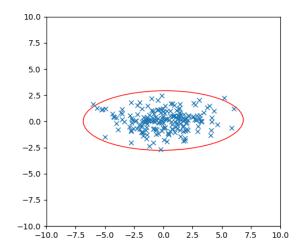


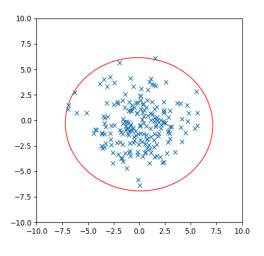
Let's think about 2 dimensions.

Let  $X = [X_1, X_2]^T$  where  $Var(X_1) = 1$ ,  $Var(X_2) = 1$  BUT  $X_1$  and  $X_2$  are dependent.  $Cov(X_1, X_2) = -3$ 



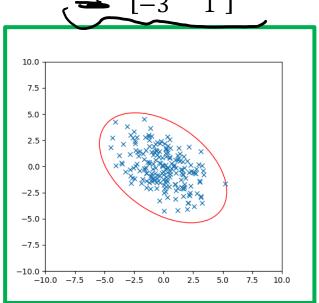


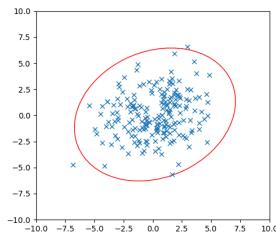


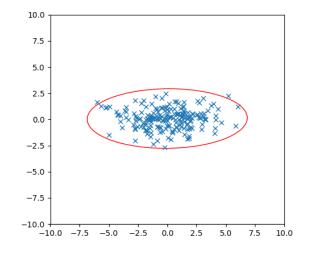


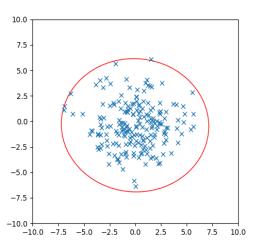
Let's think about 2 dimensions.

Let  $X = [X_1, X_2]^T$  where  $Var(X_1) = 1$ ,  $Var(X_2) = 1$  BUT  $X_1$  and  $X_2$  are dependent.  $Cov(X_1, X_2) = -3$ 









## Using the Covariance Matrix

What were those ellipses in those datasets?

How do we know how many standard deviations from the mean a 2D point is, for the independent, variance 1 ones

Well  $(x_1 - \mathbb{E}[X_1])$  is the distance from x to the center in the x-direction.

And  $(x_2 - \mathbb{E}[x_2])$  is the distance from x to the center in the y-direction.

So the number of standard deviations is  $\sqrt{(x_1 - \mathbb{E}[X_1])^2 + (x_2 - \mathbb{E}[x_2])^2}$ 

That's just the distance!

In general, the major/minor axes of those ellipses were the eigenvectors of the covariance matrix. And the associated eigenvalues tell you how the directions should be weighted.

#### Probability and ML

You're going to do a lot of conditional expectations, let's talk about why...

Many problems in ML: Given a bunch of data points, you'll find a function f that you hope will predict future points well.

We usually assume there is some true distribution  $\mathcal{D}$  of data points (e.g. all theoretical possible houses and their prices).

You get a dataset S that you assume was sampled from  $\mathcal D$  to find  $f_S$ 

 $f_S$  is a lot like an MLE – it depends on the data, so before you knew what S was, f was a random variable. You then want to figure out what the true error is if you knew  $\mathcal{D}$ .

## Probability and ML

But  $\mathcal{D}$  is a theoretical construct. What can we do instead? Get a second dataset T drawn from  $\mathcal{D}$  (drawn independently of S)

(or actually save part of your database before you start).

Then  $\mathbb{E}_{\mathcal{D}}[\text{error of } f] = \mathbb{E}_{T}[\text{error of } f_{S}|S]$ 

But how confident can you be? You'll make confidence intervals

(statements like the true error is within 5% of our estimate with probability at least .9) using concentration inequalities.

#### Practice with conditional expectations

Consider of the following process:

Flip a fair coin, if it's heads, pick up a 4-sided die; if it's tails, pick up a 6-sided die (both fair)

Roll that die independently 3 times. Let  $X_1, X_2, X_3$  be the results of the three rolls.

What is  $\mathbb{E}[X_2]$ ?  $\mathbb{E}[X_2|X_1 = 5]$ ?  $\mathbb{E}[X_2|X_3 = 1]$ ?

## Using conditional expectations

Let *F* be the event "the four sided die was chosen"

$$\mathbb{E}[X_2] = \mathbb{P}(F)\mathbb{E}[X_2|F] + \mathbb{P}(\bar{F})\mathbb{E}[X_2|\bar{F}]$$
$$= \frac{1}{2} \cdot 2.5 + \frac{1}{2} \cdot 3.5 = 3$$

 $\mathbb{E}[X_2|X_1=5]$  event  $X_1=5$  tells us we're using the 6-sided die.

$$\mathbb{E}[X_2|X_1 = 5] = 3.5$$

 $\mathbb{E}[X_2|X_3=1]$  We aren't sure which die we got, but...is it still 50/50?

#### Setup

Let E be the event " $X_3 = 1$ "

$$\mathbb{P}(E) = \frac{1}{2} \cdot \frac{1}{6} + \frac{1}{2} \cdot \frac{1}{4} = \frac{5}{24}$$

$$\mathbb{P}(F|E) = \frac{\mathbb{P}(E|F) \cdot \mathbb{P}(F)}{\mathbb{P}(E)}$$

$$=\frac{\frac{\frac{1}{4}\cdot\frac{1}{2}}{\frac{1}{2}}}{\frac{1}{5/24}}=\frac{3}{5}$$

$$\mathbb{P}(\bar{F}|E) = \frac{\mathbb{P}(E|\bar{F}) \cdot \mathbb{P}(\bar{F})}{\mathbb{P}(E)} = \frac{\frac{1}{6} \cdot \frac{1}{2}}{5/24} = \frac{2}{5} \text{ (we could also get this with LTP, but it's good confirmation)}$$

## Analysis

$$\mathbb{E}[X_2|X_3 = 1] = \mathbb{P}(F|X_3 = 1)\mathbb{E}[X_2|X_3 = 1 \cap F] + \mathbb{P}(\bar{F}|X_3 = 1)\mathbb{E}[X_2|X_3 = 1 \cap \bar{F}]$$

Wait what?

This is the LTE, applied in the space where we've conditioned on  $X_3 = 1$ .

**Everything** is conditioned on  $X_3 = 1$ . Beyond that conditioning, it's LTE.

$$= \frac{3}{5} \cdot 2.5 + \frac{2}{5} \cdot 3.5 = 2.9.$$

A little lower than the unconditioned expectation. Because seeing a 1 has made it ever so slightly more probable that we're using the 4-sided die.