
Discrete RV Zoo CSE 312 Spring 21

Lecture 14



Announcements

HW4 due date moved to tomorrow

Real world 1 to Monday

Remember that office hours are more limited Thursdays!

A lecture: Howard has office hours right after lecture instead of me (link 
on Ed – won’t be here). 

Think of problems/topics from first half of course you’d like to discuss at 
the end of section.



What Does Independence Give Us?

If 𝑋 and 𝑌 are independent random variables, then

Var 𝑋 + 𝑌 = Var 𝑋 + Var(𝑌)

𝔼 𝑋 ⋅ 𝑌 = 𝔼 𝑋 𝔼 𝑌

𝔼
𝑋

𝑌
=

𝔼 𝑋

𝔼 𝑌



Shifting the variance

We know that 

𝔼 𝑎𝑋 + 𝑐 = 𝑎𝔼 𝑋 + 𝑐.

What happens with variance?

i.e., what is Var(𝑎𝑋 + 𝑐)?

Pause and guess: what is Var(𝑋 + 𝑐)? What is Var(𝑎𝑋)?



Facts About Variance

Var 𝑋 + 𝑐 = Var(𝑋)

Proof:

Var 𝑋 + 𝑐 = 𝔼 𝑋 + 𝑐 2 − 𝔼 𝑋 + 𝑐 2

= 𝔼 𝑋2 + 𝔼 2𝑋𝑐 + 𝔼 𝑐2 − 𝔼 𝑋 + 𝑐 2

= 𝔼 𝑋2 + 2𝑐𝔼 𝑋 + 𝑐2 − 𝔼 𝑋 2 − 2𝑐𝔼 𝑋 − 𝑐2

= 𝔼 𝑋2 − 𝔼 𝑋 2

= Var(𝑋)



Facts About Variance

Var 𝑎𝑋 = 𝑎2Var(𝑋)

= 𝔼 𝑎𝑋 2 − (𝔼 𝑎𝑋 )2

= 𝑎2𝔼 𝑋2 − 𝑎𝔼 𝑋 2

= 𝑎2𝔼 𝑋2 − 𝑎2𝔼 𝑋 2

= 𝑎2 𝔼 𝑋2 − 𝔼 𝑋 2



Shifting a random variable

For any random variable 𝐗, and any constants 𝐚, 𝐛:

𝔼 𝒂𝑿 + 𝒃 = 𝒂𝔼 𝑿 + 𝒃

For any random variable 𝐗, and any constants 𝐚, 𝐛:

𝐕𝐚𝐫 𝒂𝑿 + 𝒃 = 𝒂𝟐𝐕𝐚𝐫(𝐗) + 𝒃



Discrete Random Variable Zoo

There are common patterns of experiments:

Flip a [fair/unfair] coin [blah] times and count the number of heads.

Flip a [fair/unfair] coin until the first time that you see a heads

Draw a uniformly random element from [set]

…

Instead of calculating the pmf, cdf, support, expectation, variance,… 
every time, why not calculate it once and look it up every time? 



What’s our goal?

Your goal is NOT to memorize these facts (it’ll be convenient to 
memorize some of them, but don’t waste time making flash cards).
Everything is on Wikipedia anyway. I check Wikipedia when I forget these.

Our goals are: 

0. Introduce one new distribution we haven’t seen at all.

1. Practice expectation, variance, etc. for ones we have gotten hints of.

2. Review the first half of the course with some probability calculations.



Zoo!

𝒇𝑿 𝒌 =
𝟏

𝒃 − 𝒂 + 𝟏

𝔼 𝑿 =
𝒂 + 𝒃

𝟐

𝐕𝐚𝐫 𝑿 =
𝒃 − 𝒂 𝒃 − 𝒂 + 𝟐

𝟏𝟐

𝑿~𝐔𝐧𝐢𝐟(𝒂, 𝒃)

𝒇𝑿 𝒌 = 𝟏 − 𝒑 𝒌−𝟏𝒑

𝔼 𝑿 =
𝟏

𝒑

𝐕𝐚𝐫 𝑿 =
𝟏 − 𝒑

𝒑𝟐

𝑿~𝐆𝐞𝐨(𝒑)

𝒇𝑿 𝟎 = 𝟏 − 𝒑; 𝒇𝑿(𝟏) = 𝒑

𝔼 𝑿 = 𝒑

𝐕𝐚𝐫 𝑿 = 𝒑(𝟏 − 𝒑)

𝑿~𝐁𝐞𝐫(𝒑)

𝒇𝑿 𝒌 =
𝒌 − 𝟏

𝒓 − 𝟏
𝒑𝒓 𝟏 − 𝒑 𝒌−𝒓

𝔼 𝑿 =
𝒓

𝒑

𝐕𝐚𝐫 𝑿 =
𝒓(𝟏 − 𝒑)

𝒑𝟐

𝑿~𝐍𝐞𝐠𝐁𝐢𝐧(𝒓, 𝒑)

𝒇𝑿 𝒌 =
𝒏

𝒌
𝒑𝒌 𝟏 − 𝒑 𝒏−𝒌

𝔼 𝑿 = 𝒏𝒑

𝐕𝐚𝐫 𝑿 = 𝒏𝒑(𝟏 − 𝒑)

𝑿~𝐁𝐢𝐧(𝒏, 𝒑)

𝒇𝑿 𝒌 =

𝑲
𝒌

𝑵−𝑲
𝒏−𝒌

𝑵
𝒏

𝔼 𝑿 = 𝒏
𝑲

𝑵

𝐕𝐚𝐫 𝑿 =
𝑲(𝑵 − 𝑲)(𝑵 − 𝒏)

𝑵𝟐(𝑵 − 𝟏)

𝑿~𝐇𝐲𝐩𝐆𝐞𝐨(𝑵,𝑲, 𝒏)

𝒇𝑿 𝒌 =
𝝀𝒌𝒆−𝝀

𝒌!

𝔼 𝑿 = 𝝀

𝐕𝐚𝐫 𝑿 = 𝝀

𝑿~𝐏𝐨𝐢(𝝀)



The Poisson Distribution

A new kind of random variable.

We use a Poisson distribution when:

We’re trying to count the number of times something happens in some 
interval of time.

We know the average number that happen (i.e. the expectation)

Each occurrence is independent of the others. 

There are a VERY large number of “potential sources” for those events, 
few of which happen.



The Poisson Distribution

Classic applications:

How many traffic accidents occur in Seattle in a day

How many major earthquakes occur in a year (not including 
aftershocks)

How many customers visit a bakery in an hour.

Why not just use counting coin flips? 

What are the flips…the number of cars? Every person who might visit 
the bakery? There are way too many of these to count exactly or think 
about dependency between. But a Poisson might accurately model 
what’s happening.



It’s a model

By modeling choice, we mean that we’re choosing math that we think 
represents the real world as best as possible

Is every traffic accident really independent? 

Not really, one causes congestion, which causes angrier drivers. Or both 
might be caused by bad weather/more cars on the road. 

But we assume they are (because the dependence is so weak that the 
model is useful). 



Poisson Distribution

𝑋~Poi(𝜆)

Let 𝜆 be the average number of incidents in a time interval. 

𝑋 is the number of incidents seen in a particular interval.

Support ℕ

𝑓𝑋 𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!
(for 𝑘 ∈ ℕ)

𝐹𝑋 𝑘 = 𝑒−𝜆 σ𝑖=0
⌊𝑘⌋ 𝜆𝑖

𝑖!

𝔼 𝑋 = 𝜆

Var 𝑋 = 𝜆



Some Sample PMFs
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Let’s take a closer look at that pmf

𝑓𝑋 𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!
(for 𝑘 ∈ ℕ)

If this is a real PMF, it should sum to 1. 
Let’s check that to understand the PMF a little better.

σ𝑘=0
∞ 𝜆𝑘𝑒−𝜆

𝑘!

= 𝑒−𝜆 σ𝑘=0
∞ 𝜆𝑘

𝑘!

Taylor Series for  𝑒𝑥

෍
𝑘=0

∞ 𝑥𝑘

𝑘!
= 𝑒𝑥

= 𝑒−𝜆𝑒𝜆 = 𝑒0 = 1



Let’s check something…the expectation

𝔼 𝑋 = σ𝑘=0
∞ 𝑘 ⋅ 𝑒−𝜆

𝜆𝑘

𝑘!

= σ𝑘=1
∞ 𝑘 ⋅ 𝑒−𝜆

𝜆𝑘

𝑘!
first term is 0. 

= σ𝑘=1
∞ 𝑒−𝜆

𝜆𝑘

(𝑘−1)!
cancel the 𝑘.

= 𝜆σ𝑘=1
∞ 𝑒−𝜆

𝜆𝑘−1

(𝑘−1)!
factor out 𝜆.

= 𝜆σ𝑗=0
∞ 𝑒−𝜆

𝜆𝑗

(𝑗)!
Define 𝑗 = 𝑘 − 1

= 𝜆 ⋅ 1 The summation is just the pmf!



Where did this expression come from?

For the cars we said “it’s like every car in Seattle independently might
cause an accident.”

If we knew the exact number of cars, and they all had identical 
probabilities of causing an accident…

It’d be just like counting the number of heads in 𝑛 flips of a bunch of 
coins (the coins are just VERY biased).

The Poisson is a certain limit as 𝑛 → ∞ but 𝑛𝑝 (the expected number of 
accidents) stays constant. 



Some More Familiar Variables



Situation: Bernoulli

You flip a biased coin (once) and want to record whether its heads.

You define an indicator random variable, and want to know whether it’s 
1 or not.

More generally: you have one trial, and some probability 𝑝 of “success.”



Bernoulli Distribution

𝑋~Ber(𝑝)

Parameter 𝑝 is probability of success.

𝑋 is the indicator random variable that the trial was a success.

𝑓𝑋 0 = 1 − 𝑝, 𝑓𝑋 1 = 𝑝

𝐹𝑋 𝑘 = ቐ
0 if 𝑘 < 0
1 − 𝑝 if 0 ≤ 𝑘 < 1
1 if 𝑘 ≥ 1

𝔼 𝑋 = 𝑝

Var 𝑋 = 𝑝(1 − 𝑝)

Some other uses:

Did a particular bit get written 

correctly on the device?

Did you guess right on a multiple 

choice test?

Did a server in a cluster fail?



Situation: Binomial

You flip a coin 𝑛 times independently, each with a probability 𝑝 of 
coming up heads. How many heads are there?

More generally: How many success did you see in 𝑛 independent trials, 
where each trial has probability 𝑝 of success?



Binomial Distribution

𝑋~Bin(𝑛, 𝑝)

𝑛 is the number of independent trials. 
𝑝 is the probability of success for one trial.

𝑋 is the number of successes across the 𝑛 trials.

𝑓𝑋 𝑘 = 𝑛
𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘 for 𝑘 ∈ {0,1, … , 𝑛}

𝐹𝑋 is ugly.

𝔼 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

Some other uses:

How many bits were written 

correctly on the device?

How many questions did 

you guess right on a 

multiple choice test?

How many servers in a

cluster failed?

How many keys went to one

bucket in a hash table?



Situation: Geometric

You flip a coin (which comes up heads with probability 𝑝) until you get a 
heads. How many flips did you need?

More generally: how many independent trials are needed until the first 
success?



Geometric Distribution

𝑋~Geo(𝑝)

𝑝 is the probability of success for one trial.

𝑋 is the number of trials needed to see the first success.

𝑓𝑋 𝑘 = 1 − 𝑝 𝑘−1𝑝 for 𝑘 ∈ {1,2,3, … }

𝐹𝑋 𝑘 = 1 − 1 − 𝑝 𝑘 for 𝑘 ∈ ℕ

𝔼 𝑋 =
1

p

Var 𝑋 =
1−𝑝

𝑝2

Some other uses:

How many bits can we write 

before one is incorrect?

How many questions do 

you have to answer until 

you get one right?

How many times can you 

run an experiment until it 

fails for the first time?



Geometric: Expectation

𝔼 𝑋 = σ𝑘=1
∞ 𝑘 1 − 𝑝 𝑘−1𝑝

= 𝑝σ𝑘=1
∞ 𝑘 1 − 𝑝 𝑘−1 = 𝑝 ⋅

1

𝑝2
=

1

𝑝
.

Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2

𝔼 𝑋2 = σ𝑘=1
∞ 𝑘2 1 − 𝑝 𝑘−1𝑝 = 𝑝σ𝑘=1

∞ 𝑘2 1 − 𝑝 𝑘−1



Geometric Property

Geometric random variables are called “memoryless”

Suppose you’re flipping coins (independently) until you see a heads.

The first three came up tails.

How many flips are left until you see the first heads?

It’s another independent copy of the original!

The coin “forgot” it already came up tails 3 times.



Formally…

Let 𝑋 be the number of flips needed, 𝑌 be the flips after the third.

ℙ 𝑌 = 𝑘 𝑋 ≥ 3) = ℙ(𝑌 = 𝑘 ∩ 𝑋 ≥ 3)/ℙ(𝑋 ≥ 3)

1−𝑝 𝑘+3−1𝑝

1−𝑝 3

= 1 − 𝑝 𝑘−1𝑝

Which is 𝑓𝑋(𝑘).


