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More Examples!

Suppose you roll two dice. Each die is fair and they don’t affect each 
other. What is the probability of both dice being even?

What is your sample space?

What is your probability measure ℙ?

What is your event?

What is the probability?



More Examples!

Suppose you roll two dice. Each die is fair and they don’t affect each 
other. What is the probability of both dice being even?

What is your sample space? 1,2,3,4,5,6 × {1,2,3,4,5,6}

What is your probability measure ℙ? ℙ 𝜔 = 1/36 for all 𝜔 ∈ Ω

What is your event? 2,4,6 × {2,4,6}

What is the probability? 32/62



More Examples!

Suppose you roll two dice. Each die is fair and they don’t affect each other. What is 
the probability of both dice being even?

What if we can’t tell the dice apart and always put the dice in increasing order by 
value.

What is your sample space?

{ 1,1 , 1,2 , 1,3 , 1,4 , 1,5 , 1,6 , 2,2 , 2,3 , 2,4 , 2,5 , (2,6)

3,3 , 3,4 , 3,5 , 3,6 , 4,4 , 4,5 , 4,6 , 5,5 , 5,6 , (6,6)}

What is your probability measure ℙ? 

ℙ (𝑥, 𝑦) = 2/36 if 𝑥 ≠ 𝑦,  ℙ 𝑥, 𝑥 = 1/36

What is your event? { 2,2 , 4,4 , 6,6 , 2,4 , 2,6 , 4,6 }

What is the probability? 3 ⋅
1

36
+ 3 ⋅

2

36
=

9

36



Takeaways

There is often more than one sample space possible! But one is 
probably easier than the others. 

Finding a sample space that will make the uniform measure correct will 
probably make finding the probabilities easier to calculate.



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space

Probability Measure

Event

Probability



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space: { 𝑥, 𝑦 : 𝑥 and 𝑦 are different cards }

Probability Measure uniform measure ℙ 𝜔 =
1

52⋅51

Event: all pairs with equal values

Probability 
13⋅𝑃 4,2

52⋅51



Another Example

Suppose you shuffle a deck of cards so any arrangement is equally 
likely. What is the probability that the top two cards have the same 
value?

Sample Space: Set of all orderings of all 52 cards

Probability Measure uniform measure ℙ 𝜔 =
1

52!

Event: all lists that start with two cards of the same value

Probability 
13⋅𝑃 4,2 ⋅50!

52!



Takeaway

There’s often information you “don’t need” in your sample space.

It won’t give you the wrong answer.

But it sometimes makes for extra work/a harder counting problem,

Good indication: you cancelled A LOT of stuff that was common in the 
numerator and denominator.



Some Quick Observations

For discrete probability spaces (the kind we’ve seen so far)

ℙ 𝐸 = 0 if and only if an event can’t happen.

ℙ 𝐸 = 1 if and only if an event is guaranteed (every outcome outside 
𝐸 has probability 0). 



Conditional Probabilities



Conditioning

You roll a fair red die and a fair blue die (without letting the dice affect 
each other).

But they fell off the table and you can’t see the results.

I can see the results – I tell you the sum of the two dice is 4. 

What’s the probability that the red die shows a 5, conditioned on 
knowing the sum is 4?

It’s 0. 

Without the conditioning it was 1/6.



Conditioning

When I told you “the sum of the dice is 4” we restricted the sample 
space. 

The only remaining outcomes are { 1,3 , 2,2 , 3,1 } out of 
1,2,3,4,5,6 × {1,2,3,4,5,6}.

Outside the (restricted) sample space, the probability is going to 
become 0. What about the probabilities inside?



Conditional Probability

Just like with the formal definition of probability, this is pretty abstract.
It does accurately reflect what happens in the real world.

If ℙ 𝐵 = 0, we can’t condition on it (it can’t happen! There’s no point in 
defining probabilities where we know 𝐵 has happened) – ℙ(𝐴|𝐵) is 
undefined when ℙ 𝐵 = 0.

For an event 𝐵, with ℙ 𝐵 > 0,
the “Probability of 𝐴 conditioned on 𝑩” is 

ℙ 𝑨 𝑩 =
ℙ 𝑨 ∩ 𝑩

ℙ 𝑩

Conditional Probability



Conditioning…

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”



Conditioning…

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

ℙ(𝐴|𝐵)

ℙ 𝐴 ∩ 𝐵 = ℙ ∅ = 0
ℙ 𝐵 = 3/36

𝑃 𝐴 𝐵 =
0

3/36



Conditioning…

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

ℙ(𝐴|𝐶)



Conditioning…

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let 𝐴 be “the red die is 5”

Let 𝐵 be “the sum is 4”

Let 𝐶 be “the  blue die is 3”

ℙ(𝐴|𝐶)

ℙ 𝐴 ∩ 𝐶 = 1/36
ℙ 𝐶 = 6/36

𝑃 𝐴 𝐶 =
1/36

6/36



Conditioning Practice

Red die 6
conditioned on 
sum 7

Red die 6 
conditioned on 
sum 9

Sum 7 conditioned 
on red die 6

.

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
Fill out the poll everywhere so 

Robbie knows how long to explain

Go to pollev.com/cse312



Conditioning Practice

Red die 6
conditioned on 
sum 7 1/6

Red die 6 
conditioned on 
sum 9 1/4

Sum 7 conditioned 
on red die 6 1/6

.

D2=1 D2=2 D2=3 D2=4 D2=5 D2=6

D1=1 (1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

D1=2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

D1=3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

D1=4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

D1=5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

D1=6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
Fill out the poll everywhere so 

Robbie knows how long to explain

Go to pollev.com/cse312



Direction Matters

ℙ(𝐴|𝐵) and ℙ(𝐵|𝐴) are different quantities.

ℙ(“I’m using an umbrella” | “it’s raining”) is pretty small [I usually forget 
it at home.

ℙ(“it’s raining” | “I’m using an umbrella”) is 1 (or close to it); I don’t use 
an umbrella for anything else.

It’s a lot like implications – order can matter a lot!

(but there are some 𝐴, 𝐵 where the conditioning doesn’t make a 
difference)



Wonka Bars

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

You want to get a golden ticket. You could buy a 1000-or-so of the bars 
until you find one, but that’s expensive…you’ve got a better idea!

You have a test – a very precise scale you’ve bought. 
If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the 
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you 
only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a 
golden ticket?



Willy Wonka

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert you 99.9% of the 
time.

If the bar you weigh does not have a golden ticket, the scale will (falsely) alert you 
only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have a 
golden ticket?

Which of these is closest to the right answer?
A. 0.1%

B. 10%

C. 50%

D. 90%

E. 99%

F. 99.9%



Conditioning

Let 𝐴 be the event you get ALERTED

Let 𝐵 be the event your bar has a ticket. 

What conditional probabilities are each of these? 

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 
you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 
(falsely) alert you only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have 
a golden ticket?



Conditioning

Let 𝐴 be the event you get ALERTED

Let 𝐵 be the event your bar has a ticket. 

What conditional probabilities are each of these? 

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 
you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 
(falsely) alert you only 1% of the time. 

If you pick up a bar and it alerts, what is the probability you have 
a golden ticket?

ℙ(𝐵)

ℙ(𝐴|𝐵)

ℙ 𝐴 ത𝐵

ℙ(𝐵|𝐴)



Reversing the Conditioning

All of our information conditions on whether 𝐵 happens or not – does 
your bar have a golden ticket or not?

But we’re interested in the “reverse” conditioning. We know the scale 
alerted us – we know the test is positive – but do we have a golden 
ticket?



Bayes Rule

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵



Bayes Rule

ℙ 𝐴 𝐵 =
ℙ(𝐵|𝐴)ℙ 𝐴

ℙ 𝐵

What do we know about Wonka Bars?

0.999 =
ℙ 𝐵 𝐴 ⋅ ℙ(𝐴)

.001



Filling In

What’s ℙ(𝐴)?

We’ll use a trick called “the law of total probability”:

ℙ 𝐴 = ℙ 𝐴 𝐵 ⋅ ℙ 𝐵 + ℙ 𝐴 ത𝐵 ⋅ 𝑃 ത𝐵

= 0.999 ⋅ .001 + .01 ⋅ .999

= .010989



Bayes Rule

What do we know about Wonka Bars?

0.999 =
ℙ 𝐵 𝐴 ⋅ .010989

.001

Solving ℙ 𝐵 𝐴 =
1

11
, i.e. about 0.0909.

Only about a 10% chance that the bar has the golden ticket!



Wait a minute…

That doesn’t fit with many of our guesses. What’s going on?

Instead of saying “we tested one and got a positive” imagine we tested 
1000. ABOUT how many bars of each type are there?

(about) 1 with a golden ticket 999 without. Lets say those are exactly 
right.

Lets just say that one golden is truly found

(about) 1% of the 999 without would be a positive. Lets say it’s exactly 
10.

Willy Wonka has placed golden tickets on 0.1% of his Wonka Bars.

If the bar you weigh does have a golden ticket, the scale will alert 

you 99.9% of the time.

If the bar you weigh does not have a golden ticket, the scale will 

(falsely) alert you only 1% of the time. 



Visually

Gold bar is the one (true) golden ticket bar.

Purple bars don’t have a ticket and tested 

negative.

Red bars don’t have a ticket, but tested 

positive.

The test is, in a sense, doing really well. 

It’s almost always right.

The problem is it’s also the case that the 

correct answer is almost always “no.”



Updating Your Intuition

Take 1: The test is actually good and has VASTLY increased our belief 
that there IS a 

If we told you “your job is to find a Wonka Bar with a golden ticket” 
without the test, you have 1/1000 chance, with the test, you have (about) 
a 1/11 chance. That’s (almost) 100 times better!

This is actually a huge improvement! 



Updating Your Intuition

Take 2: Humans are really bad at intuitively understanding very large 
or very small numbers.

When I hear “99% chance”, “99.9% chance”, “99.99% chance” they all go 
into my brain as “well that’s basically guaranteed” And then I forget how 
many 9’s there actually were.

But the number of 9s matters because they end up “cancelling” with the 
“number of 9’s” in the population that’s truly negative. We’ll talk about 
this a little more on Friday in the applications.


