Section 1: Combinatorics

Review of Main Concepts (Counting)

• **Sum Rule**: If an experiment can either end up being one of \(N \) outcomes, or one of \(M \) outcomes (where there is no overlap), then the total number of possible outcomes is \(N + M \).

• **Product Rule**: Suppose events \(A_1, \ldots, A_n \) each have \(m_1, \ldots, m_n \) possible outcomes, respectively. Then there are
\[
 m_1 \cdot m_2 \cdot m_3 \cdots m_n = \prod_{i=1}^{n} m_i \text{ possible outcomes overall.}
\]

• **Number of ways to order} \(n \) distinct objects**: \(n! = n \cdot (n - 1) \cdot \cdots \cdot 3 \cdot 2 \cdot 1 \)

• **Number of ways to select from} \(n \) distinct objects**:

 – **Permutations** (number of ways to linearly arrange \(k \) objects out of \(n \) distinct objects, when the order of the \(k \) objects matters):

 \[
 P(n, k) = \frac{n!}{(n-k)!}
 \]

 – **Combinations** (number of ways to choose \(k \) objects out of \(n \) distinct objects, when the order of the \(k \) objects does not matter):

 \[
 \frac{n!}{k!(n-k)!} = \binom{n}{k} = C(n, k)
 \]

1. **Seating**

How many ways are there to seat 10 people, consisting of 5 couples, in a row of 10 seats if …

(a) …all couples are to get adjacent seats?

(b) …anyone can sit anywhere, except that one couple insists on not sitting in adjacent seats?

2. **Weird Card Game**

In how many ways can a pack of fifty-two cards be dealt to thirteen players, four to each, so that every player has one card of each suit?

3. **HBCDEFGA**

How many ways are there to permute the 8 letters A, B, C, D, E, F, G, H so that A is not at the beginning and H is not at the end?

4. **Escape the Professor**

There are 6 security professors and 7 theory professors taking part in an escape room. If 4 security professors and 4 theory professors are chosen and paired off, how many pairings are possible?
5. **Birthday Cake**

A chef is preparing desserts for the week, starting on a Sunday. On each day, only one of five desserts (apple pie, cherry pie, strawberry pie, pineapple pie, and cake) may be served. On Thursday there is a birthday, so cake must be served that day. On no two consecutive days can the chef serve the same dessert. How many dessert menus are there for the week?

6. **Full Class**

There are 40 seats and 40 students in a classroom. Suppose that the front row contains 10 seats, and there are 5 students who must sit in the front row in order to see the board clearly. How many seating arrangements are possible with this restriction?

7. **Paired Finals**

Suppose you are to take a CSE 312 final in pairs. There are 100 students in the class and 8 TAs, so 8 lucky students will get to pair up with a TA. Each TA must take the exam with some student, but two TAs cannot take the exam together. How many ways can they pair up?

8. **Photographs**

Suppose that 8 people, including you and a friend, line up for a picture. In how many ways can the photographer organize the line if she wants to have fewer than 2 people between you and your friend?

9. **Rabbits!**

Rabbits Peter and Pauline have three offspring: Flopsie, Mopsie, and Cotton-tail. These five rabbits are to be distributed to four different pet stores so that no store gets both a parent and a child. It is not required that every store gets a rabbit. In how many different ways can this be done?

10. **Extended Family Portrait**

A group of n families, each with m members, are to be lined up for a photograph. In how many ways can the nm people be arranged if members of a family must stay together?

11. **Subsubset**

Let $[n] = \{1, 2, ..., n\}$ denote the first n natural numbers. How many (ordered) pairs of subsets (A, B) are there such that $A \subseteq B \subseteq [n]$?

12. **Divide Me**

How many numbers in $[360]$ are divisible by:

(a) 4, 6, and 9?

(b) 4, 6, or 9?

(c) Neither 4, 6, nor 9?