CSE 312 Foundations of Computing II

Lecture 9: Linearity of Expectation

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

1

Last Class:

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Fn (CDF)
- Expectation

Today:

- Recap
- Linearity of Expectation
- Indicator Random Variables

Reminder: Random Variables

Definition. A random variable (RV) defined on a probability space (Ω, \mathbb{P}) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is called its range/support Ω_X

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips.

Probability Mass Function (pmf) and Cumulative Distribution Function (CDF)

Definitions.

For a RV $X: \Omega \to \mathbb{R}$, the probability mass function (pmf) of X specifies for any real number x, the probability that X = x. $p_X(x) = \Pr(X = x) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$ $\sum_{x \in \Omega_X} \mathbb{P}(X = x) = 1$

For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function of X specifies for any real number x, the probability that $X \leq x$.

 $F_X(x) = \Pr(X \le x)$

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips. What is the p.m.f. of Z?

Expectation of Random Variable

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of X is $E[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr(\omega)$ or equivalently $E[X] = \sum_{x \in \Omega_X} x \cdot \Pr(X = x)$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

7

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips. What is the $\mathbb{E}(Z)$?

The brute force method

we flip n coins, each one heads with probability p,

Z is the number of heads, what is $\mathbb{E}(Z)$? $\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z=k) = \sum_{k=0}^{n} k \cdot \binom{n}{k} p^{k} (1-p)^{n-k}$ $=\sum_{k=1}^{n} k \cdot \frac{n!}{k! (n-k)!} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)! (n-k)!} p^{k} (1-p)^{n-k}$ $= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k}$ $= np \sum_{k=1}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}$ $= np \sum_{k=1}^{n-1} {n-1 \choose k} p^k (1-p)^{(n-1)-k} = np (p + (1-p))^{n-1} = np \cdot 1 = np$

This Photo by Unknown Author is licensed under <u>CC BY-NC</u>

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch **X** fish, with **E**[**X**] = **3**.
- Every day your friend catches **Y** fish, with **E[Y] = 7**.

How many fish do the two of you bring in (**Z** = **X** + **Y**) on an average day?

E[Z] = E[X + Y] = E[X] + E[Y] = 3 + 7 = 10

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch **X** fish, with **E**[**X**] = **3**.
- Every day your friend catches Y fish, with E[Y] = 7.

How many fish do the two of you bring in (**Z** = **X** + **Y**) on an average day?

E[Z] = E[X + Y] = E[X] + E[Y] = 3 + 7 = 10

You can sell each fish for \$5 at a store, but you need to pay \$20 in rent. How much profit do you expect to make?

 $E[5Z - 20] = 5E[Z] - 20 = 5 \times 10 - 20 = 30$

Linearity of Expectation – Proof

Theorem. For **any** two random variables *X* and *Y* $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y).$

 $\mathbb{E}(X + Y) = \sum_{\omega} P(\omega)(X(\omega) + Y(\omega))$ $= \sum_{\omega} P(\omega)X(\omega) + \sum_{\omega} P(\omega)Y(\omega)$ $= \mathbb{E}(X) + \mathbb{E}(Y)$

Linearity of Expectation

Theorem. For **any** two random variables *X* and *Y* $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y).$

Or, more generally: For any random variables X_1, \dots, X_n , $\mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n).$

Because: $\mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}((X_1 + \dots + X_{n-1}) + X_n)$ = $\mathbb{E}(X_1 + \dots + X_{n-1}) + \mathbb{E}(X_n) = \dots$

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips. What is the $\mathbb{E}(Z)$?

Example – Coin Tosses

we flip *n* coins, each one heads with probability *p Z* is the number of heads, what is $\mathbb{E}(Z)$?

- $X_i = \begin{cases} 1, \ i-\text{th coin-flip is heads} \\ 0, \ i-\text{th coin-flip is tails.} \end{cases}$

Fact.
$$Z = X_1 + \dots + X_n$$

Linearity of Expectation: $\mathbb{E}(Z) = \mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n) = n \cdot p$

 $\mathbb{P}(X_i = 1) = p$ $\mathbb{P}(X_i = 0) = 1 - p$

$$\mathbb{E}(X_i) = p \cdot 1 + (1-p) \cdot 0 = p$$

Computing complicated expectations

Often boils down to the following three steps

<u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables

 $X = X_1 + \dots + X_n$

- <u>LOE</u>: Observe linearity of expectation. $\mathbb{E}(X) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n).$
- <u>Conquer</u>: Compute the expectation of each X_i

Often, X_i are indicator (0/1) random variables.

Indicator random variable

For any event A, can define the indicator random variable X for A $X = \begin{cases} 1 & \text{if event A occurs} \\ 0 & \text{if event A does not occur} \end{cases} \stackrel{\mathbb{P}(X = 1) = \mathbb{P}(A)}{\mathbb{P}(X = 0) = 1 - \mathbb{P}(A)}$

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW
- what is $\mathbb{E}(X)$?

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW
- what is $\mathbb{E}(X)$?
- Use Linearity of Expectation

<u>Decompose</u>: What is *X_i*?

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW
- what is $\mathbb{E}(X)$?

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

Decompose: X_i indicates if student i got their own HW back LOE:

Conque	: What	is	E	(X_i))?
				< U/	

A.
$$\frac{1}{n}$$
 B. $\frac{1}{n-1}$ C. $\frac{1}{2}$

https://pollev.com/ annakarlin185

Pairs with same birthday

• In a class of m students, on average how many pairs of people have the same birthday?

Decompose:

LOE:

Conquer:

Linearity of Expectation – Even stronger

Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n \in \mathbb{R}$, $\mathbb{E}(a_1X_1 + \cdots + a_nX_n) = a_1\mathbb{E}(X_1) + \cdots + a_n\mathbb{E}(X_n).$

Very important: In general, we do <u>not</u> have $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$

Linearity is special!

In general $\mathbb{E}(g(X)) \neq g(\mathbb{E}(X))$ E.g., $X = \begin{cases} 1 \text{ with prob } 1/2 \\ -1 \text{ with prob } 1/2 \end{cases}$

- $\circ \quad \mathbb{E}(XY) \neq \mathbb{E}(X)\mathbb{E}(Y)$
- $\circ \quad \mathbb{E}(X/Y) \neq \mathbb{E}(X)/\mathbb{E}(Y)$
- $\circ \quad \mathbb{E}(X^2) \neq \mathbb{E}(X)^2$

How DO we compute $\mathbb{E}(g(X))$?

Expectation of g(X)

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of X is $E[X] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot \Pr(\omega)$ or equivalently $E[X] = \sum_{x \in X(\Omega)} g(x) \cdot \Pr(X = x)$

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW
- Let $Y = (X^2 + 4) \mod 8$.
- what is $\mathbb{E}(Y)$?

Pr(w)	ω	$X(\omega)$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

