CSE 312

Foundations of Computing II

Lecture 9: Linearity of Expectation

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Last Class:

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Fn (CDF)
- Expectation

Today:

- Recap
- Linearity of Expectation
- Indicator Random Variables

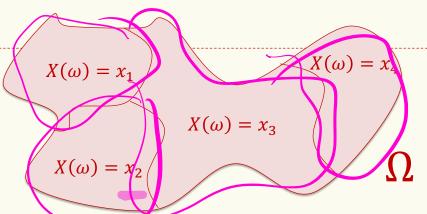
Reminder: Random Variables

Definition. A random variable (RV) defined on a probability space (Ω, \mathbb{P}) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is called its range/support Ω_X

$${X = x_i} \stackrel{\text{def}}{=} {\omega \in \Omega \mid X(\omega) = x_i}$$

Random variables <u>partition</u> the sample space.



Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips.

$$\mathcal{N} = \left\{ \text{seqs d His d length n} \right\} \quad |\mathcal{N}| = 0$$

$$\mathcal{N}_{z} : \left\{ 6, 1, 2, ..., n \right\} \quad |\mathcal{N}| = 0$$

Probability Mass Function (pmf) and Cumulative Distribution Function (CDF)

Definitions.

For a RV $X: \Omega \to \mathbb{R}$, the probability mass function (pmf) of X specifies for any real number \underline{x} , the probability that $\underline{X} = \underline{x}$.

$$p_X(x) = \Pr(X = x) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$$

 $\sum_{x \in \Omega_X} \mathbb{P}(X = x) = 1$

For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function of X specifies for any real number x, the probability that $X \leq x$.

$$F_X(x) = \Pr(X \le x)$$

$$F_X(-\infty)=0$$
 $F_X(+\infty)=1$

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips. What is the p.m.f. of Z?

$$\begin{array}{ll}
\mathcal{L}_{z=\{0,1,\dots,m\}} \\
\mathcal{L}_{z=k} \\
\mathcal$$

6

Expectation of Random Variable

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of X is

or equivalently

$$E[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr(\omega)$$

$$E[X] = \sum_{x \in \Omega_X} x \cdot \Pr(X = x)$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips. What is the $\mathbb{E}(Z)$?

$$E(z) = \sum_{k=0}^{\infty} k \binom{k}{k} p^{k} (1-p)^{n-k} = N \beta$$

The brute force method

we flip n coins, each one heads with probability p,

Z is the number of heads, what is $\mathbb{E}(Z)$?

$$\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z = k) = \sum_{k=0}^{n} k \cdot \binom{n}{k} p^{k} (1 - p)^{n - k}$$

$$= \sum_{k=0}^{n} k \cdot \frac{n!}{k! (n - k)!} p^{k} (1 - p)^{n - k} = \sum_{k=1}^{n} \frac{n!}{(k - 1)! (n - k)!} p^{k} (1 - p)^{n - k}$$

This Photo by Unknown Author is licensed under CC BY-NC

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k}$$

$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}$$

$$= np \sum_{k=1}^{n-1} {n-1 \choose k} p^k (1-p)^{(n-1)-k} = np (p + (1-p))^{n-1} = np \cdot 1 = np$$

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch X fish, with E[X] = 3.
- Every day your friend catches Y fish, with E[Y] = 7.

How many fish do the two of you bring in (Z = X + Y) on an average day?

$$E[Z] = E[X + Y] = E[X] + E[Y] = 3 + 7 = 10$$

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch X fish, with E[X] = 3.
- Every day your friend catches Y fish, with E[Y] = 7.

How many fish do the two of you bring in (Z = X + Y) on an average day?

$$E[Z] = E[X + Y] = E[X] + E[Y] = 3 + 7 = 10$$

You can sell each fish for \$5 at a store, but you need to pay \$20 in rent. How much profit do you expect to make?

$$E[5Z - 20] = 5E[Z] - 20 = 5 \times 10 - 20 = 30$$

Linearity of Expectation – Proof

on same prob space.

Theorem. For any two random variables *X* and *Y*

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y).$$

$$\mathbb{E}(X+Y) = \sum_{\omega} P(\omega)(X(\omega) + Y(\omega))$$
$$= \sum_{\omega} P(\omega)X(\omega) + \sum_{\omega} P(\omega)Y(\omega)$$
$$= \mathbb{E}(X) + \mathbb{E}(Y)$$

Linearity of Expectation

Theorem. For any two random variables X and Y

$$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y).$$

Or, more generally: For any random variables X_1, \dots, X_n ,

$$\mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n).$$

Because:
$$\mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}((X_1 + \dots + X_{n-1}) + X_n)$$

= $\mathbb{E}(X_1 + \dots + X_{n-1}) + \mathbb{E}(X_n) = \dots$

inducto

$$E(X) = \sum_{x \in \mathcal{X}^{\lambda}} \overline{x} \cdot P(X = x)$$

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips. What is the $\mathbb{E}(Z)$?

Lat
$$X_i = S_i^T$$
 of in countess can up Hs

$$Z = X_i + X_2 + X_3 + \cdots + X_n$$

LOE $E(z) = E(X_i + + X_n) = E(X_i) + E(X_n) + \cdots + E(X_n)$

$$E(X_i) = 1 - Pr(in toss H) + O \cdot Pr(in toss T)$$

$$= Pr(in toss H) = P$$

$$E(z) = E(X_i) + \cdots + E(X_n) = NP$$

$$P(x_i) = P(x_i) + \cdots + P(x_n) = NP$$

Example – Coin Tosses

we flip n coins, each one heads with probability p

Z is the number of heads, what is $\mathbb{E}(Z)$?

-
$$X_i = \begin{cases} 1, & i - \text{th coin-flip is heads} \\ 0, & i - \text{th coin-flip is tails.} \end{cases}$$

Fact.
$$Z = X_1 + \cdots + X_n$$

Linearity of Expectation:

$$\mathbb{E}(Z) = \mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n) = n \cdot p$$

$$\mathbb{P}(X_i = 1) = p$$

$$\mathbb{P}(X_i = 0) = 1 - p$$

$$\mathbb{E}(X_i) = p \cdot 1 + (1 - p) \cdot 0 = p$$

Computing complicated expectations

Often boils down to the following three steps

• <u>Decompose:</u> Finding the right way to decompose the random variable into sum of simple random variables

$$X = X_1 + \cdots + X_n$$

LOE: Observe linearity of expectation.

$$\mathbb{E}(X) = \mathbb{E}(X_1) + \cdots + \mathbb{E}(X_n).$$

Conquer: Compute the expectation of each X_i

Often, X_i are indicator (0/1) random variables.

X::

Indicator random variable

For any event A, can define the indicator random variable X for A

$$X = \begin{cases} 1 & \text{if event A occurs} \\ 0 & \text{if event A does not occur} \end{cases}$$

$$\mathbb{P}(X=1) = \mathbb{P}(A) = 0.55$$

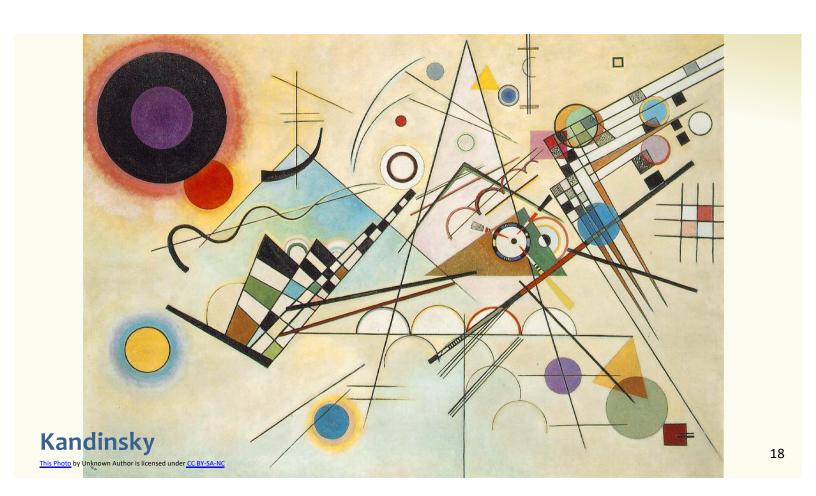
$$\mathbb{P}(X=0) = 1 - \mathbb{P}(A)$$

$$X \text{ indicate r.v.} A = 1 \cdot P(X=1) + 0 \cdot P(X=0)$$

Ximbiated

if in these H's.

$$E(X_i) = Pr(i^m \text{ these H's}) = P(A)$$



$$E(X) = \sum_{k=0}^{n} k P(X=k)$$

19

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW . We have $X := \{ (X) : (X$

4						
Pr(ω)	ω	$X(\boldsymbol{\omega})$	$X_{l}(\omega)$	X(w)	K3(W)	
1/6	1, 2, 3	3	I	1	1	
1/6	1, 3, 2	1	ı	0	٥	
1/6	2, 1, 3	1	٥	0	l	
1/6	2, 3, 1	0	٥	0	0	
1/6	3, 1, 2	0	0	0	٥	
1/6	3, 2, 1	1	0	/ 1	9	
		T	1	•		

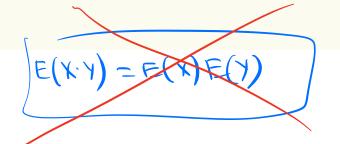
$$E(X) = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{1}{12}$$

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- what is $\mathbb{E}(X)$?
- Use Linearity of Expectation

Decompose: What is X_i ?

$Pr(\omega)$	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1



Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- what is $\mathbb{E}(X)$?

Pr(ω)	ω	$X(\omega)$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

<u>Decompose</u>: X_i indicates if student i got their own HW back

LOE:

Conquer: What is
$$\mathbb{E}(X_i)$$
? A. $\frac{1}{n}$ B. $\frac{1}{n-1}$ C. $\frac{1}{2}$

Pairs with same birthday

 In a class of m students, on average how many pairs of people have the same birthday?

Decompose:

$$X = \begin{cases}
X_{ij} \\
X_{ij} \\$$

Linearity of Expectation – Even stronger

Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n \in \mathbb{R}$,

$$\mathbb{E}(a_1X_1 + \dots + a_nX_n) = a_1\mathbb{E}(X_1) + \dots + a_n\mathbb{E}(X_n).$$

Very important: In general, we do <u>not</u> have $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$