CSE 312
Foundations of Computing I

Lecture 8: Random Variables and Expectation

PAUL G. ALLEN SCHOOL Guest Lecturer: Aleks Jovcic

OF COMPUTER SCIENCE & ENGINEERING

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au
incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & Anna ©
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Random Variables (Idea)

Often: We want to capture quantitative properties of the
outcome of a random experiment, e.g.:

— What is the total of two dice rolls?
— What is the number of coin tosses needed to see the first head?
— What is the number of heads among 2 coin tosses?

iy 35> 7 fTH » 2
51,2373 TTT T (H?Z2 S5



Random Variables

........................................................................................................................................................................

Definition. A random variable (RV) for a probability space

@IP) is a function X@@ ’(ZX
7

The set of values that X can take on is called its range/support {1y
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RV Example @ @ - @ 7((; Z, ?(g?)-:; 7
>0 balls labeled(@)?, ..., 20 in a);cgn@ )((% 57 83) /5

— Draw a subset of 3 uniformly at random

— Let X = maximum of the 3 numbers on the balls
* Example: X(2,7,5) =7
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Probability Mass Function (PMF)

Random variables
partition the
sample space.

x€X(Q)
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Probability Mass Function (PMF) w

Definition. For a RV X: () — R, we define the event

X = x} Of{w €D X(w) =83

We write P(X = x) = P({X = x}) = P({w fE Q| X(w) = x}) where
- P(X = x) is the probability mass function (PM F) of X

......................................................................................................................................................................

Random variables
partition the
sample space.

z PX =x) =

XEX(Q)




Probability Mas@l F)

Definition. For a RV X: () — R, we dgfine the event
(X =x} & wEQIIi)?(w)=x[(
: —

Wewrite P(X = x) = P{{X = x}) = P{w € Q| X(w) = x}) where
. P(X = x) is the probability mass function (PMF) of X

Random variables You also see this
partition the notation (e.g. in
sample space. book):

z P(X =x) =1 [li(X = ;=(p@(x) |

XEX(Q)




Probability Mass Function

/
Flipping two independent coins mT} 3
X = number of heads in the two flips
X(HH) = 2 1 & (TH) 5]_ X(TT) = 0
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RV Example ¢ 20, -- e 3

M
20 balls labeled 1, 2, ..., 20 in a bt
— Draw a subset of 3 uniformly at random
— Let X = maximum of the 3 numbers on the balls

Poll: deks avcic
?(}( z \M) https://pollev. com/_.aaadﬁgm%g&s
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What is Pr(X = 20)?
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Cumulative Distribution Function (CDF)

.....................................................................................................................................................................

Definition. For a RV X: () — R, the cumulative distribution fupcti

where X specifies for any real number x, the probability tha X < x.

f i Fx(x) F Pr(X < x)
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Go back to 2 coin clips, where X is the number of heads
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Cumulative Distribution Function (CDF)

.....................................................................................................................................................................

Definition. For a RV X: () — R, the cumulative distribution function of
 where X specifies for any real number x, the probability that X < x.

Fy(x) = Pr(X < x)

Go back to 2 coin clips, where X is the number of heads

100
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Example: Returning Homeworks

* Class with 3 students, randomly hand back homeworks. All
permutations equally likely.
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Expectation (Idea)

What is the expected number of heads in 2 independent flips of
a fair coin?
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Intuition: “Weighted average” of the possible outcomes (weighted by probability)
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Example: Returning Homeworks

* Class with 3 students, randomly hand back homeworks. All
permutations equally likely.

* Let X be the number of students who get their own HW

elXx]= & P(Xx=x)
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Flip a Biased Coin Until Heads (Independent Flips)

Suppose a coin has probabili being heads. Keep flipping
independent flips until heads. Cet X be the number of flips

g -
until heads. H

N

Whatis: Pr(X = 1) = P | H

Whatis: Pr(X = 2) = C("?>f
(-3 =(-p)'P

Whatis: Pr(X = k) = C
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Flip a Biased Coin Until Heads (Independent Flips) il

F = 20
Suppose a coin has probability p of being heads. Keep flipping
independent flips until heads. Let X be the number of flips until heads.

What is E[X]? J_‘
c(XJ)=p
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Students on a bus

A group of 120 students are driven on 3 buses to a football game. There
are 36 students in the first bus, 40 in the second and 44 in the third. Let
Y be the number of students on a uniformly random bus. What is the
pmf of Y and E(Y)? When the buses arrive, one of the 120 students is
randomly chosen. Let X denote the number of students on the bus of
the randomly chosen student. What is the pmf of X and what is E(X)?
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Coin flipping again

Suppose we flip a coin with probability p of coming up Heads n
times. Let X be the number of Heads in the n coin flips. What is
the pmf of X2
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