CSE 312

Foundations of Computing II

Lecture 8: Random Variables and Expectation

Guest Lecturer: Aleks Jovcic

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & Anna ©

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Random Variables (Idea)

Often: We want to **capture quantitative properties** of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 2 coin tosses?

Random Variables

Definition. A random variable (RV) for a probability space

The set of values that X can take on is called its range/support Ω_X

Example. Number of heads in 2 independent coin flips $\Omega = \{HH, HT, TH, TT\}$

RV Example

20 balls labeled 1,2,..., 20 in a bin
$$\chi(315,3,83) \rightarrow /5$$

- Draw a subset of 3 uniformly at random
- Let X = maximum of the 3 numbers on the balls
 - Example: X(2, 7, 5) = 7
 - Example: X(15, 3, 8) = 15
- What is $|\Omega_{\rm X}|$?

Poll: https://pollev.com/annakarling

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Random variables partition the sample space.

$$\sum_{x \in X(\Omega)} \mathbb{P}(X = x) = 1$$

$$\mathbb{P}(X = x)$$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event

$$\{X = x\} \stackrel{\text{ded}}{=} \{\omega \in \Omega \mid X(\omega) = \infty\}$$

We write $\mathbb{P}(X = x) = \mathbb{P}(\{X = x\}) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$ where $\mathbb{P}(X = x)$ is the probability mass function (PMF) of X

Random variables partition the sample space.

$$\sum_{x \in X(\Omega)} \underline{\mathbb{P}(X = x)} = 1$$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event

$$\{X = x\} \stackrel{\text{def}}{=} \{\omega \in \Omega | X(\omega) = x\}$$

We write $\mathbb{P}(X = x) = \mathbb{P}(\{X = x\}) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$ where $\mathbb{P}(X = x)$ is the probability mass function (PMF) of X

Random variables partition the sample space.

$$\sum_{x \in X(\Omega)} \mathbb{P}(X = x) = 1$$

You also see this notation (e.g. in book):

$$\mathbb{P}(X=x) = p_{\tilde{X}}(x)$$

Probability Mass Function

Flipping two independent coins

$$X =$$
 number of heads in the two flips

$$X(HH) = 2$$

$$X(HT) = 1$$

 $X(TH) \ge$

$$X(TT) = 0$$

What is
$$Pr(X = k)$$
?

What is
$$Pr(X = k)$$
?

$$0,1,2$$
 $\mathbb{R}(X=2)$

RV Example

20 balls labeled 1, 2, ..., 20 in a bin

- Draw a subset of 3 uniformly at random
- Let X = maximum of the 3 numbers on the balls

What is
$$Pr(X = 20)$$
?
$$P(X = 20) = P(\Xi = 3)$$

$$\frac{\binom{|q|}{2}}{\binom{20}{3}}$$

Poll: deks acic 835 https://pollev.com/annakarlime

A.
$$\binom{2}{\binom{20}{3}}$$

B. $\binom{19}{2}/\binom{20}{3}$

C. $\binom{19^2}{\binom{20}{3}}$

D. $\frac{19.18}{\binom{20}{3}}$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function of where X specifies for any real number x, the probability that $X \leq x$.

$$F_X(x) = \Pr(X \le x)$$

Go back to 2 coin clips, where X is the number of heads

$$\Pr(X = x) = \begin{cases} \frac{1}{4}, & x = 0 \\ \frac{1}{2}, & x = 1 \end{cases}$$

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function of where X specifies for any real number x, the probability that $X \le x$.

$$F_X(x) = Pr(X \le x)$$

Go back to 2 coin clips, where *X* is the number of heads

$$\Pr(X = x) = \begin{cases} \frac{1}{4}, & x = 0\\ \frac{1}{2}, & x = 1\\ \frac{1}{4}, & x = 2 \end{cases} \qquad F_X(x) = \begin{cases} 0, & x < 0\\ \frac{1}{4}, & 0 \le x < 1\\ \frac{3}{4}, & 1 \le x < 2\\ 1, & 2 \le x \end{cases} \xrightarrow{0.25}$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Expectation (Idea)

What is the *expected* number of heads in 2 independent flips of a fair coin?

Cumulative Disribution Function (CDF)

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of X is

or equivalently
$$E[X] = \sum_{\omega \in \Omega} X(\omega) \cdot Pr(\omega)$$

$$E[X] = \sum_{x \in X(\Omega)} \Pr(X = x)$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

Flip a Biased Coin Until Heads (Independent Flips)

Suppose a coin has probability p of being heads. Keep flipping independent flips until heads. Let X be the number of flips until heads.

What is:
$$Pr(X = 1) = \mathbf{P}$$

What is:
$$Pr(X = 2) = (-P)P$$

 $P(X=3) = (-P)P$
What is: $Pr(X = k) = (-P)P-1$

Flip a Biased Coin Until Heads (Independent Flips)
$$P = \frac{1}{20}$$

Suppose a coin has probability p of being heads. Keep flipping independent flips until heads. Let X be the number of flips until heads.

What is
$$E[X]$$
?

$$E[X] = P$$

$$E[X] = \sum_{k \in \mathcal{X}_{X}} h \cdot P(X = k) = \sum_{k=1}^{\infty} k \cdot P(X = k)$$

$$= \sum_{k=1}^{\infty} h \cdot (1-p)^{k+1} \cdot p = \frac{1}{(1-(1-p))^{2}} \cdot p = \frac{1}{p^{2}} \cdot P = \boxed{p} \cdot \boxed{p}$$

$$= \sum_{k=1}^{\infty} h \cdot (1-p)^{k+1} \cdot p = \frac{1}{(1-(1-p))^{2}} \cdot p = \frac{1}{p^{2}} \cdot P = \boxed{p} \cdot \boxed{p}$$

 $\int_{\mathcal{C}}^{\mathbf{Z}} \left(\int_{\mathcal{C}} X = \left(\int_{\mathcal{C}} \mathcal{D} \right) \right)$

Students on a bus

A group of 120 students are driven on 3 buses to a football game. There are 36 students in the first bus, 40 in the second and 44 in the third. Let Y be the number of students on a uniformly random bus. What is the pmf of Y and E(Y)? When the buses arrive, one of the 120 students is randomly chosen. Let X denote the number of students on the bus of the randomly chosen student. What is the pmf of X and what is E(X)?

Coin flipping again

Suppose we flip a coin with probability p of coming up Heads n times. Let X be the number of Heads in the n coin flips. What is the pmf of X?