CSE 312

Foundations of Computing II

Lecture 7: Chain Rule and Independence

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Announcements

- No concept check today!
- Section tomorrow is **important** with new content that you will need on pset 3, problem 7. Bring your laptops.
- I have to be out of town (and will be largely unreachable) Thursday-Saturday – Aleks will give Friday's lecture!
- Quiz 1 out later next week. Will cover material from the first two problem sets.

Friday 10/8: Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_1, E_2, ..., E_n$ be a partition of the sample space, and F and event. Then,

$$P(E_1|F) = \frac{P(F|E_1)P(E_1)}{P(F)} = \frac{P(F|E_1)P(E_1)}{\sum_{i=1}^{n} P(F|E_i)P(E_i)}$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$P(E|F) = \frac{P(F|E)P(E)}{P(F|E)P(E) + P(F|E^C)P(E^C)}$$

Monday 10/10: Chain Rule

$$\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} \qquad \qquad \mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(\mathcal{A} \cap \mathcal{B})$$

$$\mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(\mathcal{A} \cap \mathcal{B})$$

Theorem. (Chain Rule) For events $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n$,

$$\mathbb{P}(\mathcal{A}_1 \cap \cdots \cap \mathcal{A}_n) = \mathbb{P}(\mathcal{A}_1) \cdot \mathbb{P}(\mathcal{A}_2 | \mathcal{A}_1) \cdot \mathbb{P}(\mathcal{A}_3 | \mathcal{A}_1 \cap \mathcal{A}_2)$$

$$\cdots \mathbb{P}(\mathcal{A}_n | \mathcal{A}_1 \cap \mathcal{A}_2 \cap \cdots \cap \mathcal{A}_{n-1})$$

An easy way to remember: We have n tasks and we can do them sequentially, conditioning on the outcome of previous tasks

Monday: Independence

Definition. Two events \mathcal{A} and \mathcal{B} are (statistically) **independent** if

$$\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}).$$

Alternatively,

- If $\mathbb{P}(A) \neq 0$, equivalent to $\mathbb{P}(B|A) = \mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A}|\mathcal{B}) = \mathbb{P}(\mathcal{A})$

"The probability that \mathcal{B} occurs after observing \mathcal{A} " -- Posterior = "The probability that \mathcal{B} occurs" -- Prior

Agenda

- A Sequential Process Defined Using Independence
- Independence As An Assumption
- Sometimes Independence Occurs for Nonobvious Reasons
- Conditional Independence
- Correlation vs Causation
- Information Cascades

Example - Throwing A Die Repeatedly

Alice and Bob are playing the following game.

A 6-sided die is thrown, and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers

If it shows 1, $2 \rightarrow Alice wins$.

If it shows $3 \rightarrow Bob$ wins.

Otherwise, play another round

What is Pr(Alice wins on 1st round) = 3

Pr(Alice wins on i^{th} round) = ?

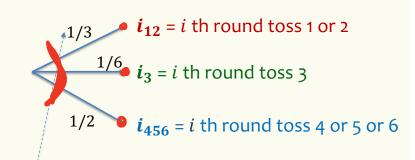
Pr(Alice wins) = ?

Sequential Process – defined in terms of independence

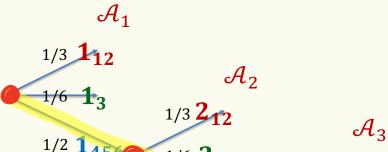
A 6-sided die is thrown, and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers

Local Rules: In each round

- If it shows 1,2 → Alice wins
- If it shows 3 → Bob wins
- Else, play another round



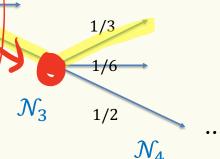
Pr (Alice wins on i -th round | nobody won in rounds 1.. i-1) = 1/3



Local Rules: In each round

- If it shows 1,2 → Alice wins
- If it shows 3 → Bob wins
- Else, play another round

- \mathcal{A}_i = Alice wins in round i
- \mathcal{N}_i = nobody wins in rounds 1..i



1/3

1/6

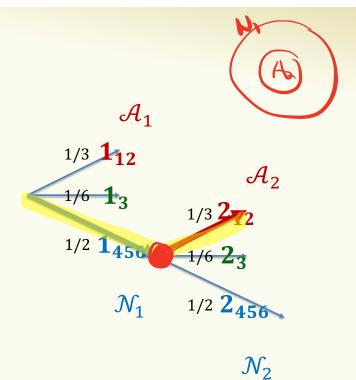
Events:

- \mathcal{A}_i = Alice wins in round i
- \mathcal{N}_i = nobody wins in rounds 1..i

$$\mathbb{P}(A_2) = Pr(u, nA_b)$$

$$= Pr(u,) Pr(A_b, u,)$$

$$= \frac{1}{3}$$



2nd roll indep of 1st roll

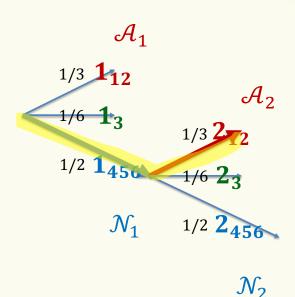
Events:

- \mathcal{A}_i = Alice wins in round i
- \mathcal{N}_i = nobody wins in rounds 1..i

$$\mathbb{P}(\mathcal{A}_2) = \mathcal{P}(\mathcal{N}_1 \cap \mathcal{A}_2)$$

$$= \mathcal{P}(\mathcal{N}_1) \times \mathcal{P}(\mathcal{A}_2 | \mathcal{N}_1)$$

$$= \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$



The event \mathcal{A}_2 implies \mathcal{N}_1 , and this means that $\mathcal{A}_2 \cap \mathcal{N}_1 = \mathcal{A}_2$

2nd roll indep of 1st roll

 $\mathbb{P}(\underline{\mathcal{A}_i}) = \mathcal{P}(\mathcal{N}_1 \cap \mathcal{N}_2 \cap \dots \cap \mathcal{N}_{i-1} \cap \mathcal{A}_i)$

Events:

- \mathcal{A}_i = Alice wins in round i
- \mathcal{N}_i = nobody wins in round $\mathbf{\xi}$

 $= \underbrace{\mathcal{P}(\mathcal{N}_{1})} \times \underbrace{\mathcal{P}(\mathcal{N}_{2}|\mathcal{N}_{1})} \times \underbrace{\mathcal{P}(\mathcal{N}_{3}|\mathcal{N}_{1}\cap\mathcal{N}_{2})} \times \underbrace{\mathcal{P}(\mathcal{N}_{i-1}|\mathcal{N}_{1}\cap\mathcal{N}_{2}\cap\cdots\cap\mathcal{N}_{i-1})} \times \underbrace{\mathcal{P}(\mathcal{A}_{i}|\mathcal{N}_{1}\cap\mathcal{N}_{2}\cap\cdots\cap\mathcal{N}_{i-1})}_{i-1}$

12

$$\mathcal{A}_i$$
 = Alice wins in round i $\mathbb{P}(\mathcal{A}_i) = \left(\frac{1}{2}\right)^{l-1} \times \frac{1}{3}$

What is the probability that Alice wins?

$$P(A, \cup A_{\sigma} \cup A_{3} \cup \cdots) = \sum_{i=1}^{\infty} P(A_{i}) = \sum_{i=1}^{\infty} (\frac{1}{2})^{i-1} \frac{1}{3}$$

$$\mathcal{A}_i$$
 = Alice wins in round i $\mathbb{P}(\mathcal{A}_i) = \left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}$

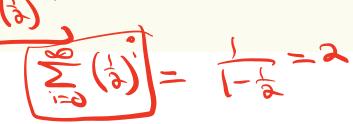
What is the probability that Alice wins?

$$\mathbb{P}(\mathcal{A}_1 \cup \mathcal{A}_2 \cup \cdots) = \sum_{i=1}^{\infty} \mathbb{P}(\mathcal{A}_i) \qquad \text{All } c$$

All \mathcal{A}_i 's are disjoint.

$$\sum_{i=1}^{\infty} \left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3} = \frac{1}{3} \times 2 = \frac{2}{3}$$

Fact. If
$$|x| < 1$$
, then $\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$.



Agenda

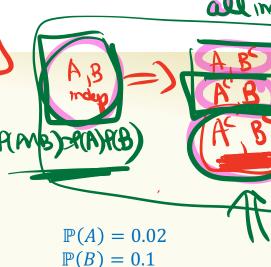
- A Sequential Process Defined Using Independence
- Independence As An Assumption
- Sometimes Independence Occurs for Nonobvious Reasons
- Conditional Independence
- Correlation vs Causation
- Information Cascades

Independence as an assumption

- People often assume it without justification.
- Example: A sky diver has two chutes

A: event that the main chute doesn't open

B: event that the backup doesn't open



$$(2r(AUB) = 1 - P(A^c \cap B^c)$$

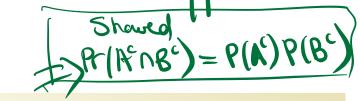
$$= (-P(A^c) P(B^c))$$

$$= 1 - (P_{-}(A) + P(B)) - P(A \cap B)$$

$$= 1 - P_{-}(A) - P(B) + P(A) + P(B)$$

$$= (1 - P_{-}(A)) - P(B) + P(A) + P(B)$$

$$= (1 - P_{-}(A)) - P(B) + P(B)$$



Independence as an assumption

- People often assume it without justification.
- Example: A sky diver has two chutes

A: event that the main chute doesn't open

B: event that the backup doesn't open

$$\mathbb{P}(A) = 0.02$$

 $\mathbb{P}(B) = 0.1$

What is the chance that at least one opens assuming independence?

Assuming independence doesn't justify the assumption! Both chutes could fail because of the same rare event e.g., freezing rain.

Agenda

- A Sequential Process Defined Using Independence
- Independence As An Assumption
- Conditional Independence
- Correlation vs Causation
- Information Cascades

Independence – Another Look

Definition. Two events \mathcal{A} and \mathcal{B} are (statistically) **independent** if

$$\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}).$$

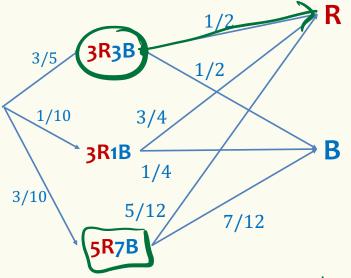
"Equivalently." $\mathbb{P}(A|B) = \mathbb{P}(A)$.

Events generated independently

their probabilities satisfy independence

This can be counterintuitive!

Sequential Process



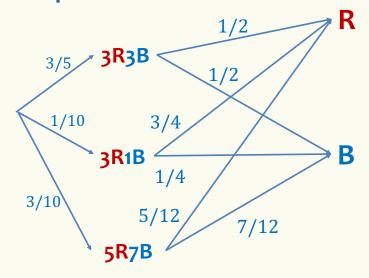
Setting: An urn contains:

- 3 red and 3 blue balls w/ probability 3/5
- 3 red and 1 blue balls w/ probability 1/10
- 5 red and 7 blue balls w/ probability 3/10 We draw a ball at random from the urn.

Are R and 3R3B independent?

$$P(R) = P(R|3R3B)P(3R3B) + P(R|3R1B)P(3R1B)$$
+ $P(R|5R7B)P(5R7B)$

Sequential Process



Are R and 3R3B independent?

Setting: An urn contains:

- 3 red and 3 blue balls w/ probability 3/5
- 3 red and 1 blue balls w/ probability 1/10
- 5 **red** and 7 **blue** balls w/ probability 3/10 We draw a ball at random from the urn.

$$\mathbb{P}(\mathbf{R}) = \frac{3}{5} \times \frac{1}{2} + \frac{1}{10} \times \frac{3}{4} + \frac{3}{10} \times \frac{5}{12} = \frac{1}{2}$$

$$\mathbb{P}(3R3B) \times \mathbb{P}(R \mid 3R3B)$$

Independent! $\mathbb{P}(R) = \mathbb{P}(R \mid 3R3B)$

Agenda

- A Sequential Process Defined Using Independence
- Independence As An Assumption
- Sometimes Independence Occurs for Nonobvious Reasons
- Conditional Independence
- Correlation vs Causation
- Information Cascades

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are **independent** conditioned on $\underline{\mathcal{C}}$ if $\mathbb{P}(\mathcal{C}) \neq 0$ and $\mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid \mathcal{C}) = \mathbb{P}(\mathcal{A} \mid \mathcal{C}) \cdot \mathbb{P}(\mathcal{B} \mid \mathcal{C})$.

Plain Independence. Two events \mathcal{A} and \mathcal{B} are independent if

$$\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}).$$

Equivalence:

- If $\mathbb{P}(A) \neq 0$, equivalent to $\mathbb{P}(B|A) = \mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A}|\mathcal{B}) = \mathbb{P}(\mathcal{A})$

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are **independent** conditioned on \mathcal{C} if $\mathbb{P}(\mathcal{C}) \neq 0$ and $\mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid \mathcal{C}) = \mathbb{P}(\mathcal{A} \mid \mathcal{C}) \cdot \mathbb{P}(\mathcal{B} \mid \mathcal{C})$.

Equivalence:

- If $\mathbb{P}(A \cap C) \neq 0$, equivalent to $\mathbb{P}(B|A \cap C) = \mathbb{P}(B|C)$
- If $\mathbb{P}(\mathcal{B} \cap \mathcal{C}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} | \mathcal{B} \cap \mathcal{C}) = \mathbb{P}(\mathcal{A} | \mathcal{C})$

Example - More coin tossing

Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with Pr(Head) = 0.9. We pick one randomly with equal probability and flip that coin twice independently. What is the probability we get all heads?

$$Pr(HH) = Pr(HH \mid C1) Pr(C1) + Pr(HH \mid C2) Pr(C2)$$

$$= P(H \mid C1) P(H \mid C_1) P(C1) + P(HH \mid C2) Pr(C2)$$

$$= P(H \mid C1) P(H \mid C_1) P(C1) + P(HH \mid C2) Pr(C2)$$

$$= P(H \mid C1) P(H \mid C_1) P(C1) + P(HH \mid C2) Pr(C2)$$

$$= P(H \mid C1) P(H \mid C_1) P(C1) + P(HH \mid C2) Pr(C2)$$

$$= P(H \mid C1) P(H \mid C_1) P(C1) + P(HH \mid C2) Pr(C2)$$

$$= P(H \mid C1) P(H \mid C_1) P(C1) + P(HH \mid C2) Pr(C2)$$

$$= P(H \mid C1) P(H \mid C_1) P(C1) + P(HH \mid C2) Pr(C2)$$

$$= P(H \mid C1) P(H \mid C_1) P(C1) + P(HH \mid C2) Pr(C2)$$

$$= P(H \mid C1) P(H \mid C_1) P(C1) + P(HH \mid C2) Pr(C2)$$

Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with Pr(Head) = 0.9. We pick one randomly with equal probability and flip that coin 2 times independently. What is the probability we get all heads?

$$Pr(HH) = Pr(HH \mid C1) Pr(C1) + Pr(HH \mid C2) Pr(C2)$$
 LTP

= $Pr(H \mid C2)^2 Pr(C1) + Pr(H \mid C2)^2 Pr(C2)$ Conditional Independence

$$= 0.3^2 \cdot 0.5 + 0.9^2 \cdot 0.5 = 0.45$$

$$Pr(H) = Pr(H \mid C1) Pr(C1) + Pr(H \mid C2) Pr(C2) = 0.6$$