
CSE 312
Foundations of Computing II
Lecture 7: Chain Rule and Independence
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Slide Credit: Based on Stefano Tessaro’s slides for 312 19au 
incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself J

Anna R. Karlin

 



Announcements

• No concept check today!
• Section tomorrow is important with new content that you will need 

on pset 3, problem 7.  Bring your laptops.
• I have to be out of town (and will be largely unreachable) Thursday-

Saturday – Aleks will give Friday’s lecture!
• Quiz 1 out later next week. Will cover material from the first two 

problem sets.
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Friday 10/8: Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let !!, !", … , !# be a partition of the 
sample space, and $ and event. Then,

% !! $) =
% $ !! %(!!)

%($) = % $ !! % !!
∑$%!# % $ !$ % !$

Simple Partition: In particular, if ! is an event with non-zero 
probability, then 

% ! $) = % $ ! %(!)
% $ ! % ! + % $ !& %(!&)
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Monday 10/10: Chain Rule
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ℙ ℬ # = ℙ # ∩ ℬ
ℙ #

ℙ # ℙ ℬ # = ℙ # ∩ ℬ

Theorem. (Chain Rule) For events #!, #", … ,## , 

ℙ #! ∩ ⋯∩## = ℙ #! ⋅ ℙ #" #! ⋅ ℙ(#'|#! ∩ #")

⋯ℙ(##|#! ∩ #" ∩ ⋯∩##(!)
An easy way to remember: We have n tasks and we can do them sequentially, 
conditioning on the outcome of previous tasks



Monday: Independence
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Alternatively,
• If ℙ " ≠ 0, equivalent to ℙ ℬ " = ℙ '
• If ℙ ℬ ≠ 0, equivalent to ℙ " ℬ = ℙ "

Definition. Two events " and ℬ are (statistically) independent if

ℙ " ∩ ℬ = ℙ " ⋅ ℙ(ℬ).

“The probability that ℬ occurs after observing "” -- Posterior
=  “The probability that ℬ occurs” -- Prior  



Agenda

• A Sequential Process Defined Using Independence 
• Independence As An Assumption
• Sometimes Independence Occurs for Nonobvious Reasons
• Conditional Independence
• Correlation vs Causation
• Information Cascades
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Example – Throwing A Die Repeatedly
Alice and Bob are playing the following game.

A 6-sided die is thrown, and each time it’s thrown, regardless of the 
history, it is equally likely to show any of the six numbers

If it shows 1, 2 → Alice wins.
If it shows 3 → Bob wins.
Otherwise, play another round

What is Pr(Alice wins on 1st round) =  
…

Pr(Alice wins on .th round) = ?

Pr(Alice wins) = ?



Sequential Process – defined in terms of independence

A 6-sided die is thrown, and each time it’s thrown, regardless of the 
history, it is equally likely to show any of the six numbers
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Local Rules: In each round
• If it shows 1,2 → Alice wins
• If it shows 3 → Bob wins
• Else, play another round

$!" = % th round toss 1 or 2

$# = % th round toss 3

1/3
1/6

1/2 $$%& = % th round toss 4 or 5 or 6

Pr (Alice wins on - -th round | nobody won in rounds 1. . --1) = 1/3

g



Sequential Process – Example
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Events:
• "& = Alice wins in round .
• /& = nobody wins in rounds 1. . .

:-./
<)*
<+
<-./

Local Rules: In each round
• If it shows 1,2 → Alice wins
• If it shows 3 → Bob wins
• Else, play another round
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Sequential Process – Example 
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Events:
• "& = Alice wins in round .
• /& = nobody wins in rounds 1...

ℙ #" =
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2nd roll indep of 1st roll
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Sequential Process – Example 
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Events:
• "& = Alice wins in round .
• /& = nobody wins in rounds 1...

= =(;!)×=(#"|;!)
ℙ #" = =(;! ∩ #")

:)*
:+

1/3

1/6

1/2
1/3

1/6

1/2

#!

#"

;!
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:-./
<)*
<+
<-./= 1

2 ×
1
3 =

1
6

The event "' implies /(, and 
this means that "' ∩/( = "'

2nd roll indep of 1st roll



Sequential Process – Example 
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Events:
• "& = Alice wins in round .
• /& = nobody wins in round .

ℙ #$ = =(;! ∩;" ∩ ⋯∩;$(! ∩ #$)
= =(;!) ×=(;"|;!)

= 1
2

$(!
×13

×=(;'|;! ∩;")
⋯×=(;$(!|;! ∩;" ∩ ⋯∩;$(!)×=(#$|;! ∩;" ∩ ⋯∩;$(!)
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Sequential Process -- Example
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"' = Alice wins in round % ℙ "& = !
"
#$!

× !
%

What is the probability that Alice wins?
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Sequential Process -- Example
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"' = Alice wins in round % ℙ "& = !
"
#$!

× !
%

What is the probability that Alice wins?

ℙ #! ∪ #" ∪ ⋯ =

1
&)(

* 1
2

&+(
×13 = 1

3×2 =
2
3 Fact. If & < 1, then ∑'()* &' = +

+,-. 

All "&’s are disjoint. Σ$%!0 ℙ #$
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Probability

Alex Tsun
Joshua Fan



Agenda

• A Sequential Process Defined Using Independence 
• Independence As An Assumption
• Sometimes Independence Occurs for Nonobvious Reasons
• Conditional Independence
• Correlation vs Causation
• Information Cascades
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Independence as an assumption

● People often assume it without justification.
● Example: A sky diver has two chutes

● What is the chance that at least one opens assuming independence?
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+ : event that the main chute doesn’t open ℙ + = 0.02
0 : event that the backup doesn’t open ℙ 0 = 0.1
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Independence as an assumption

● People often assume it without justification.
● Example: A sky diver has two chutes

● What is the chance that at least one opens assuming independence?

Assuming independence doesn’t justify the assumption! Both chutes could fail 
because of the same rare event e.g., freezing rain.
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+ : event that the main chute doesn’t open ℙ + = 0.02
0 : event that the backup doesn’t open ℙ 0 = 0.1
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Agenda

• A Sequential Process Defined Using Independence 
• Independence As An Assumption
• Sometimes Independence Occurs for Nonobvious Reasons
• Conditional Independence
• Correlation vs Causation
• Information Cascades
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Independence – Another Look
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Definition. Two events " and ℬ are (statistically) independent if

ℙ " ∩ ℬ = ℙ " ⋅ ℙ(ℬ).

“Equivalently.” ℙ "|ℬ = ℙ " .

Events generated independently è their probabilities satisfy independence
ç

Not necessarily 

This can be counterintuitive! D



Sequential Process
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Setting: An urn contains:
• 3 red and 3 blue balls w/ probability   3/5
• 3 red and 1 blue balls  w/ probability 1/10 
• 5 red and 7 blue balls  w/ probability 3/10 
We draw a ball at random from the urn.

1/2

3/4

1/4
3/10

5R7B
Are R and 3R3B independent? 

5/12 7/12

U

a

o
PCR PCR 3R3B PBR3B PCR 3RD PERIB

PRIER 7B PERFB

L E PCR 3R3B



Sequential Process
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R
3/5

1/10

1/2
3R3B

3R1B B

Setting: An urn contains:
• 3 red and 3 blue balls w/ probability   3/5
• 3 red and 1 blue balls  w/ probability 1/10 
• 5 red and 7 blue balls  w/ probability 3/10 
We draw a ball at random from the urn.

1/2

3/4

1/4
3/10

5R7B

Are R and 3R3B independent? 

5/12 7/12 ℙ R = 3
5×

1
2 +

1
10×

3
4 +

3
10×

5
12 =

1
2

Independent! ℙ R = ℙ R | 3R3B

ℙ 3R3B ×ℙ R | 3R3B



Agenda

• A Sequential Process Defined Using Independence 
• Independence As An Assumption
• Sometimes Independence Occurs for Nonobvious Reasons
• Conditional Independence
• Correlation vs Causation
• Information Cascades
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Plain Independence. Two events " and ℬ are independent if

ℙ " ∩ ℬ = ℙ " ⋅ ℙ(ℬ).

Conditional Independence
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Equivalence:
• If ℙ " ≠ 0, equivalent to ℙ ℬ " = ℙ '
• If ℙ ℬ ≠ 0, equivalent to ℙ " ℬ = ℙ "

Definition. Two events " and ℬ are independent conditioned on 9 if
ℙ 9 ≠ 0 and ℙ " ∩ ℬ | 9 = ℙ " | 9 ⋅ ℙ ℬ 9).
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Conditional Independence
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Equivalence:
• If ℙ " ∩ 9 ≠ 0, equivalent to ℙ ℬ " ∩ 9 = ℙ ' | 9
• If ℙ ℬ ∩ 9 ≠ 0, equivalent to ℙ " ℬ ∩ 9 = ℙ " | 9

Definition. Two events " and ℬ are independent conditioned on 9 if
ℙ 9 ≠ 0 and ℙ " ∩ ℬ | 9 = ℙ " | 9 ⋅ ℙ ℬ 9).
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Example – More coin tossing
Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with 
Pr(Head) = 0.9. We pick one randomly with equal probability and flip that 
coin twice independently. What is the probability we get all heads?

Pr(<<) = Pr(<< | 91) Pr(91) + Pr(<< | 92) Pr(92) LTP

Tippet pics

0,32 It 0 9212



Example – More coin tossing
Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with 
Pr(Head) = 0.9. We pick one randomly with equal probability and flip that 
coin 2 times independently. What is the probability we get all heads?

Pr(<<) = Pr(<< | 91) Pr(91) + Pr(<< | 92) Pr(92)

= Pr(< 92 'Pr(91) + Pr(< 92 ' Pr(92)
= 0.3' ⋅ 0.5 + 0.9' ⋅ 0.5 = 0.45

LTP

Conditional Independence

Pr(<) = Pr(< | 91) Pr(91) + Pr(< 92 Pr 92 = 0.6
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