
CSE 312

Foundations of Computing II
Lecture 6: Chain Rule and Independence
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Slide Credit: Based on Stefano Tessaro’s slides for 312 19au 
incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself J

Anna R. Karlin



Last Class:
• Conditional Probability 
• Bayes Theorem
• Law of Total probability
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ℙ ℬ 𝒜 =
ℙ 𝒜 ∩ ℬ
ℙ 𝒜

ℙ 𝐴 𝐵 =
ℙ 𝐵 𝐴 ℙ(𝐴)

ℙ(𝐵)

ℙ 𝐹 = ∑!"#$ ℙ 𝐹 𝐸! ℙ(𝐸!) 𝐸! partition Ω



Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let 𝐸!, 𝐸", … , 𝐸# be a partition of the 
sample space, and 𝐹 and event. Then,

𝑃 𝐸! 𝐹) =
𝑃 𝐹 𝐸! 𝑃(𝐸!)

𝑃(𝐹)
=

𝑃 𝐹 𝐸! 𝑃 𝐸!
∑$%!# 𝑃 𝐹 𝐸$ 𝑃 𝐸$

Simple Partition: In particular, if 𝐸 is an event with non-zero 
probability, then 

𝑃 𝐸 𝐹) =
𝑃 𝐹 𝐸 𝑃(𝐸)

𝑃 𝐹 𝐸 𝑃 𝐸 + 𝑃 𝐹 𝐸& 𝑃(𝐸&)
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Example – Zika Testing

This example and following slides are from Lisa Yan (Stanford). 4

Usually no or mild symptoms (rash); sometimes 
severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns 
“positive”, what is the likelihood that you 
actually have the disease?

• Tests for diseases are rarely 100% accurate.



Example – Zika Testing

Suppose we know the following Zika stats
– A test is 98% effective at detecting Zika (“true positive”)
– However, the test yields a “false positive” 1% of the time
– 0.5% of the US population has Zika.

What is the probability you have Zika (event Z) if you test positive (event T).
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https://pollev.com/ annakarlin185

A) Less than 0.25
B) Between 0.25 and 0.5
C) Between 0.5 and 0.75
D) Between 0.75 and 1



Example – Zika Testing

Suppose we know the following Zika stats
– A test is 98% effective at detecting Zika (“true positive”)
– However, the test may yield a “false positive” 1% of the time
– 0.5% of the US population has Zika.

What is the probability you have Zika (event Z) if you test positive (event T).
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Example – Zika Testing
Suppose we know the following Zika stats

– A test is 98% effective at detecting Zika (“true positive”)   100%
– However, the test may yield a “false positive” 1% of the time    10/995 =  approximately 1%
– 0.5% of the US population has Zika.  5% have it.

What is the probability you have Zika (event Z) if you test positive (event T).
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Suppose we had 1000 people:
• 5 have Zika and test positive
• 985 do not have Zika and test negative
• 10 do not have Zika and test positive

5
5 + 10

=
1
3
≈ 0.33

Demo

Have zika blue, don’t pink

https://web.stanford.edu/class/cs109/demos/medicalBayes.html


Philosophy – Updating Beliefs

While it’s not 98% that you have the disease, your beliefs changed drastically

Z = you have Zika
T = you test positive for Zika
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Prior: P(Z)

I have a 0.5% chance 
of having Zika

Posterior: P(Z|T)

I now have a 33% 
chance of having Zika 

after the test.
Receive positive 

test result



Example – Zika Testing
Suppose we know the following Zika stats

– A test is 98% effective at detecting Zika (“true positive”)
– However, the test may yield a “false positive” 1% of the time
– 0.5% of the US population has Zika.

What is the probability you test negative (event 5𝑇) if you have Zika (event 𝑍)?
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Conditional Probability Define a Probability Space
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The probability conditioned on 𝐴 follows the same properties as 
(unconditional) probability.

Example. ℙ ℬ! 𝒜 = 1 − ℙ(ℬ|𝒜)



Conditional Probability Define a Probability Space
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The probability conditioned on 𝐴 follows the same properties as 
(unconditional) probability.

Example. ℙ ℬ! 𝒜 = 1 − ℙ(ℬ|𝒜)

Formally. (Ω, ℙ) is a probability space + ℙ 𝒜 > 0

(𝒜,ℙ(⋅ |𝒜)) is a probability space
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Today:
• Chain Rule 
• Independence
• Sequential Process 



Chain Rule
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ℙ ℬ 𝒜 =
ℙ 𝒜 ∩ ℬ
ℙ 𝒜

ℙ 𝒜 ℙ ℬ 𝒜 = ℙ 𝒜 ∩ ℬ



Chain Rule
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ℙ ℬ 𝒜 =
ℙ 𝒜 ∩ ℬ
ℙ 𝒜

ℙ 𝒜 ℙ ℬ 𝒜 = ℙ 𝒜 ∩ ℬ

Theorem. (Chain Rule) For events 𝒜!, 𝒜", … ,𝒜# , 

ℙ 𝒜! ∩ ⋯∩𝒜# = ℙ 𝒜! ⋅ ℙ 𝒜" 𝒜! ⋅ ℙ(𝒜'|𝒜! ∩ 𝒜")

⋯ℙ(𝒜#|𝒜! ∩ 𝒜" ∩ ⋯∩𝒜#(!)

An easy way to remember: We have n tasks and we can do them sequentially, 
conditioning on the outcome of previous tasks



Chain Rule Example 

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 
cards in order. (uniform probability space).

What is P ( ) = P(A ∩ B ∩ C)?

A: Ace of Spades First
B:  10 of Clubs Second
C: 4 of Diamonds Third



Chain Rule Example 

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 
cards in order. (uniform probability space).

What is P ( ) = P(A ∩ B ∩ C)?

A: Ace of Spades First
B:  10 of Clubs Second
C: 4 of Diamonds Thirdℙ 𝐴 ⋅ ℙ 𝐵 𝐴 ⋅ ℙ 𝐶 𝐴 ∩ 𝐵

1
52

⋅
1
51

⋅
1
50



Independence
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Alternatively,
• If ℙ 𝒜 ≠ 0, equivalent to ℙ ℬ 𝒜 = ℙ 𝐵
• If ℙ ℬ ≠ 0, equivalent to ℙ 𝒜 ℬ = ℙ 𝒜

Definition. Two events 𝒜 and ℬ are (statistically) independent if

ℙ 𝒜 ∩ ℬ = ℙ 𝒜 ⋅ ℙ(ℬ).

“The probability that ℬ occurs after observing 𝒜” -- Posterior
=  “The probability that ℬ occurs” -- Prior  



Example -- Independence
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Toss a coin 3 times. Each of 8 outcomes equally likely. 
• A = {at most one T} = {HHH, HHT, HTH, THH}
• B = {at most 2 Heads}= {HHH}c

Independent?
ℙ 𝒜 ∩ℬ = ℙ 𝒜 ⋅ ℙ(ℬ)?

Poll:
A. Yes, independent
B. No 

pollev/annakarlin185



Often probability space Ω, ℙ is defined using independence
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Example – Network Communication

A
B

C
D

p

r

q

s

Each link works with the probability given, independently. 
What’s the probability A and D can communicate? 

ℙ 𝐴𝐷 = ?



Example – Network Communication

A
B

C
D

p

r

q

s

Each link works with the probability given, independently. 
What’s the probability A and D can communicate? 

ℙ 𝐴𝐵 ∩ 𝐵𝐷 = ℙ 𝐴𝐵 ⋅ ℙ 𝐵𝐷 = 𝑝𝑞

ℙ 𝐴𝐶 ∩ 𝐶𝐷 = ℙ 𝐴𝐶 ⋅ ℙ 𝐶𝐷 = 𝑟𝑠

ℙ 𝐴𝐷 = ℙ 𝐴𝐵 ∩ 𝐵𝐷 𝑜𝑟 𝐴𝐶 ∩ 𝐶𝐷

= ℙ 𝐴𝐵 ∩ 𝐵𝐷) + ℙ (𝐴𝐶 ∩ 𝐶𝐷 - ℙ 𝐴𝐵 ∩ 𝐵𝐷 ∩ 𝐴𝐶 ∩ 𝐶𝐷

ℙ 𝐴𝐵 ∩ 𝐵𝐷 ∩ 𝐴𝐶 ∩ 𝐶𝐷 = ℙ 𝐴𝐵 ⋅ ℙ 𝐵𝐷 ⋅ ℙ 𝐴𝐶 ⋅ ℙ 𝐶𝐷 = 𝑝𝑞𝑟𝑠
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Example – Biased coin

We have a biased coin comes up Heads with probability 2/3; Each flip is 
independent of all other fips. Suppose it is tossed 3 times.

ℙ 𝐻𝐻𝐻 =

ℙ 𝑇𝑇𝑇 =

ℙ 𝐻𝑇𝑇 =



Example – Biased coin

We have a biased coin comes up Heads with probability 2/3, 
independently of other flips. Suppose it is tossed 3 times.

ℙ 2 ℎ𝑒𝑎𝑑𝑠 𝑖𝑛 3 𝑡𝑜𝑠𝑠𝑒𝑠 =

https://pollev.com/ annakarlin185

A) (2/3)2 1/3 
B) 2/3
C) 3 (2/3)2 1/3 
D) (1/3)2



Example – Throwing A Die Repeatedly
Alice and Bob are playing the following game.

A 6-sided die is thrown, and each time it’s thrown, regardless of the 
history, it is equally likely to show any of the six numbers

If it shows 1, 2 → Alice wins.
If it shows 3 → Bob wins.
Otherwise, play another round

What is Pr(Alice wins on 1st round) =  
Pr(Alice wins on 2st round) =
…
Pr(Alice wins on 𝑖th round) = ?
Pr(Alice wins) = ?



Sequential Process – defined in terms of independence

A 6-sided die is thrown, and each time it’s thrown, regardless of the 
history, it is equally likely to show any of the six numbers
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Local Rules: In each round
• If it shows 1,2 → Alice wins
• If it shows 3 → Bob wins
• Else, play another round

𝒊𝟏𝟐 = 𝑖 th round toss 1 or 2

𝒊𝟑 = 𝑖 th round toss 3

1/3

1/6

1/2 𝒊𝟒𝟓𝟔 = 𝑖 th round toss 4 or 5 or 6

Pr (Alice wins on 𝑖 -th round | nobody won in rounds 1. . 𝑖-1) = 1/3



Sequential Process – Example
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𝟏𝟏𝟐
𝟏𝟑

1/3

1/6

1/2

1/3

1/6

1/2

1/3

1/6

1/2

1/3

1/6

1/2 …

𝒜!

𝒜"

𝒜'

𝒜,
𝒩!

𝒩"

𝒩'

𝒩,

Events:
• 𝒜' = Alice wins in round 𝑖
• 𝒩' = nobody wins in rounds 1. . 𝑖

𝟏𝟒𝟓𝟔
𝟐𝟏𝟐
𝟐𝟑

𝟐𝟒𝟓𝟔

Local Rules: In each round
• If it shows 1,2 → Alice wins
• If it shows 3 → Bob wins
• Else, play another round



Sequential Process – Example 
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Events:
• 𝒜' = Alice wins in round 𝑖
• 𝒩' = nobody wins in rounds 1..𝑖

ℙ 𝒜" =

𝟏𝟏𝟐
𝟏𝟑

1/3

1/6

1/2

1/3

1/6

1/2

𝒜!

𝒜"

𝒩!

𝒩"

𝟏𝟒𝟓𝟔
𝟐𝟏𝟐
𝟐𝟑

𝟐𝟒𝟓𝟔

2nd roll indep of 1st roll



Sequential Process – Example 
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Events:
• 𝒜' = Alice wins in round 𝑖
• 𝒩' = nobody wins in rounds 1..𝑖

= 𝒫(𝒩!)×𝒫(𝒜"|𝒩!)
ℙ 𝒜" = 𝒫(𝒩! ∩ 𝒜")

𝟏𝟏𝟐
𝟏𝟑

1/3

1/6

1/2

1/3

1/6

1/2

𝒜!

𝒜"

𝒩!

𝒩"

𝟏𝟒𝟓𝟔
𝟐𝟏𝟐
𝟐𝟑

𝟐𝟒𝟓𝟔
=
1
2
×
1
3
=
1
6

The event 𝒜( implies 𝒩), and 
this means that 𝒜( ∩𝒩) = 𝒜(

2nd roll indep of 1st roll



Sequential Process – Example 
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Events:
• 𝒜' = Alice wins in round 𝑖
• 𝒩' = nobody wins in round 𝑖

ℙ 𝒜$ = 𝒫(𝒩! ∩𝒩" ∩ ⋯∩𝒩$(! ∩ 𝒜$)

= 𝒫(𝒩!) ×𝒫(𝒩"|𝒩!)

=
1
2

$(!

×
1
3

×𝒫(𝒩'|𝒩! ∩𝒩")
⋯×𝒫(𝒩$(!|𝒩! ∩𝒩" ∩ ⋯∩𝒩$(!)×𝒫(𝒜$|𝒩! ∩𝒩" ∩ ⋯∩𝒩$(!)

𝟏𝟏𝟐
𝟏𝟑

1/3

1/6

1/2 1/3

1/6

1/2

𝒜!

𝒜$

𝒩!

𝒩$

𝟏𝟒𝟓𝟔 𝒊𝟏𝟐
𝒊𝟑

𝒊𝟒𝟓𝟔

⋯⋯



Sequential Process -- Example
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𝒜' = Alice wins in round 𝑖 ℙ 𝒜' = !
"

#$!
× !
%

What is the probability that Alice wins?



Sequential Process -- Example
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𝒜' = Alice wins in round 𝑖 ℙ 𝒜' = !
"

#$!
× !
%

What is the probability that Alice wins?

ℙ 𝒜! ∪ 𝒜" ∪ ⋯ =

*
'*)

+
1
2

',)

×
1
3 =

1
3
×2 =

2
3

Fact. If 𝑥 < 1, then ∑'()* 𝑥' = +
+,-

. 

All 𝒜'’s are disjoint. Σ$%!0 ℙ 𝒜$



Probability

Alex Tsun
Joshua Fan



Independence – Another Look
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Definition. Two events 𝒜 and ℬ are (statistically) independent if

ℙ 𝒜 ∩ ℬ = ℙ 𝒜 ⋅ ℙ(ℬ).

“Equivalently.” ℙ 𝒜|ℬ = ℙ 𝒜 .

Events generated independently è their probabilities satisfy independence
ç

Not necessarily 

This can be counterintuitive!



Sequential Process
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R
3/5

1/10

1/2
3R3B

3R1B B

Setting: An urn contains:
• 3 red and 3 blue balls w/ probability   3/5
• 3 red and 1 blue balls  w/ probability 1/10 
• 5 red and 7 blue balls  w/ probability 3/10 
We draw a ball at random from the urn.

1/2

3/4

1/4
3/10

5R7B
Are R and 3R3B independent? 

5/12 7/12



Sequential Process
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R
3/5

1/10

1/2
3R3B

3R1B B

Setting: An urn contains:
• 3 red and 3 blue balls w/ probability   3/5
• 3 red and 1 blue balls  w/ probability 1/10 
• 5 red and 7 blue balls  w/ probability 3/10 
We draw a ball at random from the urn.

1/2

3/4

1/4
3/10

5R7B

Are R and 3R3B independent? 

5/12 7/12
ℙ R =

3
5
×
1
2
+
1
10
×
3
4
+
3
10
×
5
12

=
1
2

Independent! ℙ R = ℙ R | 3R3B

ℙ 3R3B ×ℙ R | 3R3B



Plain Independence. Two events 𝒜 and ℬ are independent if

ℙ 𝒜 ∩ ℬ = ℙ 𝒜 ⋅ ℙ(ℬ).

Conditional Independence
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Equivalence:
• If ℙ 𝒜 ≠ 0, equivalent to ℙ ℬ 𝒜 = ℙ 𝐵
• If ℙ ℬ ≠ 0, equivalent to ℙ 𝒜 ℬ = ℙ 𝒜

Definition. Two events 𝒜 and ℬ are independent conditioned on 𝐶 if
ℙ 𝐶 ≠ 0 and ℙ 𝒜 ∩ ℬ | 𝐶 = ℙ 𝒜 | 𝐶 ⋅ ℙ ℬ 𝐶).



Conditional Independence
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Equivalence:
• If ℙ 𝒜 ∩ 𝐶 ≠ 0, equivalent to ℙ ℬ 𝒜 ∩ 𝐶 = ℙ 𝐵 | 𝐶
• If ℙ ℬ ∩ 𝐶 ≠ 0, equivalent to ℙ 𝒜 ℬ ∩ 𝐶 = ℙ 𝒜 | 𝐶

Definition. Two events 𝒜 and ℬ are independent conditioned on 𝐶 if
ℙ 𝐶 ≠ 0 and ℙ 𝒜 ∩ ℬ | 𝐶 = ℙ 𝒜 | 𝐶 ⋅ ℙ ℬ 𝐶).



Example – More coin tossing
Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with 
Pr(Head) = 0.9. We pick one randomly with equal probability and flip that 
coin twice independently. What is the probability we get all heads?

Pr(𝐻𝐻) = Pr(𝐻𝐻 | 𝐶1) Pr(𝐶1) + Pr(𝐻𝐻 | 𝐶2) Pr(𝐶2) LTP



Example – More coin tossing
Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with 
Pr(Head) = 0.9. We pick one randomly with equal probability and flip that 
coin 2 times independently. What is the probability we get all heads?

Pr(𝐻𝐻) = Pr(𝐻𝐻 | 𝐶1) Pr(𝐶1) + Pr(𝐻𝐻 | 𝐶2) Pr(𝐶2)

= Pr(𝐻 𝐶2 (Pr(𝐶1) + Pr(𝐻 𝐶2 ( Pr(𝐶2)

= 0.3( ⋅ 0.5 + 0.9( ⋅ 0.5 = 0.45

LTP

Conditional Independence

Pr(𝐻) = Pr(𝐻 | 𝐶1) Pr(𝐶1) + Pr(𝐻 𝐶2 Pr 𝐶2 = 0.6


