CSE 312

Foundations of Computing II

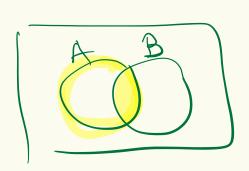
Lecture 6: Chain Rule and Independence

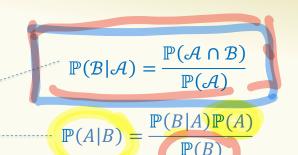
Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Last Class:

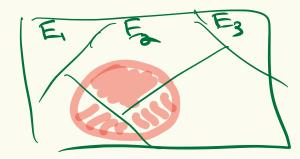
- Conditional Probability
- Bayes Theorem
- Law of Total probability





$$\mathbb{P}(F) = \sum_{i=1}^{n} \mathbb{P}(F|E_i)\mathbb{P}(E_i) \quad E_i \text{ partition } \Omega$$

$$= \sum_{i=1}^{n} \mathbb{P}(E; \cap F)$$



Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_1, E_2, ..., E_n$ be a partition of the sample space, and F and event. Then,

$$P(E_1|F) = \frac{P(F|E_1)P(E_1)}{P(F)} = \frac{P(F|E_1)P(E_1)}{\sum_{i=1}^{n} P(F|E_i)P(E_i)}$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$P(E|F) = \frac{P(F|E)P(E)}{P(F|E)P(E) + P(F|E^C)P(E^C)}$$

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

• Tests for diseases are rarely 100% accurate.

Suppose we know the following Zika stats

ppose we know the following Zika stats

– A test is 98% effective at detecting Zika ("true positive")

– However, the test yields a "false positive" 1% of the time

– 0.5% of the US population has Zika.

$$Pr(Z) = 0.05$$

at is the probability you have Zika (event Z) if you test positive (event T).

What is the probability you have Zika (event \mathbb{Z}) if you test positive (event \mathbb{T}).

https://pollev.com/annakarlin185

- A) Less than 0.25
 B) Between 0.25 and 0.5
 C) Between 0.5 and 0.75
 D) Between 0.75 and 1

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you have Zika (event \mathbb{Z}) if you test positive (event \mathbb{T}).

$$Pr(Z|T) = Pr(T|Z)Pr(Z) - 0.98 \cdot 0.005$$

$$Pr(T) = Pr(T|Z)Pr(Z) + Pr(T|Z)Pr(Z)$$

$$O.99 0.005 0.01 0.995 0.01 0.01 0.995 0.01$$

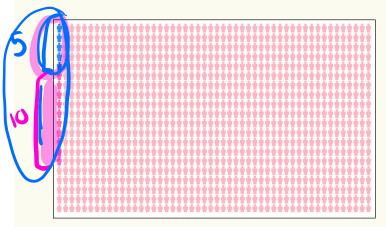
Have zika blue, don't pink

P(T(Z)=1

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test may yield a "false positive" 1% of the time 10/995 = approximately 1%
- 0.5% of the US population has Zika. 5% have it.

What is the probability you have Zika (event \mathbb{Z}) if you test positive (event \mathbb{T}).



Suppose we had 1000 people:

- 5 have Zika and test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

$$\frac{5}{5+10} = \frac{1}{3} \approx 0.33$$

<u>Demo</u>

Philosophy – Updating Beliefs

While it's not 98% that you have the disease, your beliefs changed drastically

Z = you have Zika

T = you test positive for Zika

Posterior: P(Z|T)

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you test negative (event \overline{T}) if you have Zika (event Z)?

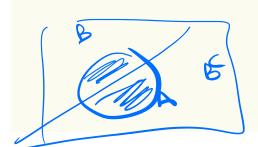
Pr(T/2) = 0.98

Conditional Probability Define a Probability Space

The probability conditioned on A follows the same properties as (unconditional) probability.

Example.
$$\mathbb{P}(\mathcal{B}^c|\mathcal{A}) = 1 - \mathbb{P}(\mathcal{B}|\mathcal{A})$$

$$P(B|A) + P(B^c|A) = P(B\cap A) + P(B^c\cap A)$$



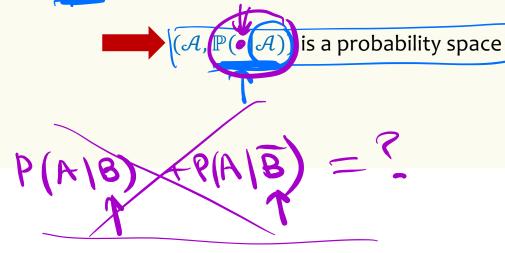
$$\frac{P(B \cap A) + P(B \cap A)}{P(A)} = \frac{P(A)}{P(A)} = 1$$

Conditional Probability Define a Probability Space

The probability conditioned on A follows the same properties as (unconditional) probability.

Example.
$$\mathbb{P}(\mathcal{B}^c|\mathcal{A}) = 1 - \mathbb{P}(\mathcal{B}|\mathcal{A})$$

Formally. (Ω, \mathbb{P}) is a probability space $+ \mathbb{P}(A) > 0$



Today:

- Chain Rule
- Independence
- Sequential Process

Chain Rule

$$\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})}$$

$$\mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(\mathcal{A} \cap \mathcal{B})$$

$$\mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(\mathcal{A} \cap \mathcal{B})$$

$$\mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(\mathcal{A} \cap \mathcal{B})$$

$$\mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{A} \cap \mathcal{B})$$

$$\mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{A} \cap \mathcal{B})$$

Chain Rule

$$\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} \qquad \qquad \mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B}|\mathcal{A}) = \mathbb{P}(\mathcal{A} \cap \mathcal{B})$$

Theorem. (Chain Rule) For events $A_1, A_2, ..., A_n$,

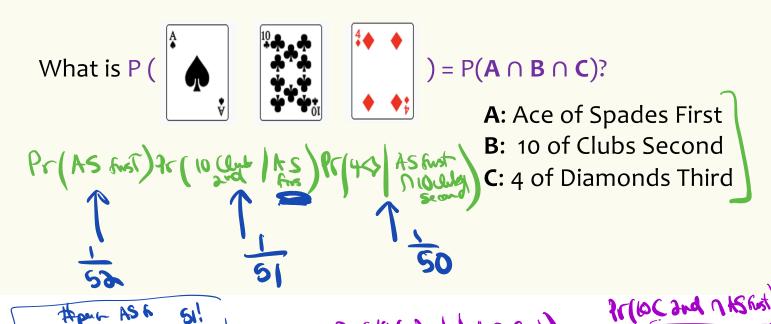
$$\mathbb{P}(\mathcal{A}_1 \cap \cdots \cap \mathcal{A}_n) = \mathbb{P}(\mathcal{A}_1) \cdot \mathbb{P}(\mathcal{A}_2 | \mathcal{A}_1) \cdot \mathbb{P}(\mathcal{A}_3 | \mathcal{A}_1 \cap \mathcal{A}_2)$$

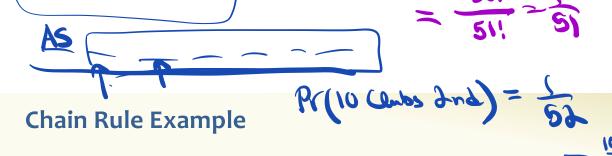
$$\cdots \mathbb{P}(\mathcal{A}_n | \mathcal{A}_1 \cap \mathcal{A}_2 \cap \cdots \cap \mathcal{A}_{n-1})$$

An easy way to remember: We have n tasks and we can do them sequentially, conditioning on the outcome of previous tasks

Chain Rule Example

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards in order. (uniform probability space).





 $\overline{52}$ $\overline{51}$ $\overline{50}$

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards in order. (uniform probability space).

Independence

Definition. Two events \mathcal{A} and \mathcal{B} are (statistically) independent if

$$\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}).$$

Alternatively,

- If $\mathbb{P}(A) \neq 0$, equivalent to $\mathbb{P}(B|A) = \mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A}|\mathcal{B}) = \mathbb{P}(\mathcal{A})$

"The probability that B occurs after observing A" -- Posterior = "The probability that B occurs" -- Prior

Example -- Independence

Toss a coin 3 times. Each of 8 outcomes equally likely.

- A = {at most one T} = {HHH, HHT, HTH, THH}
- B = {at most 2 Heads}= {HHH}

Independent?

$$\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \stackrel{?}{=} \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})$$

$$P(A) = \frac{1}{8}$$

$$P(B) = \frac{7}{8}$$

A. Yes, independent

B. No

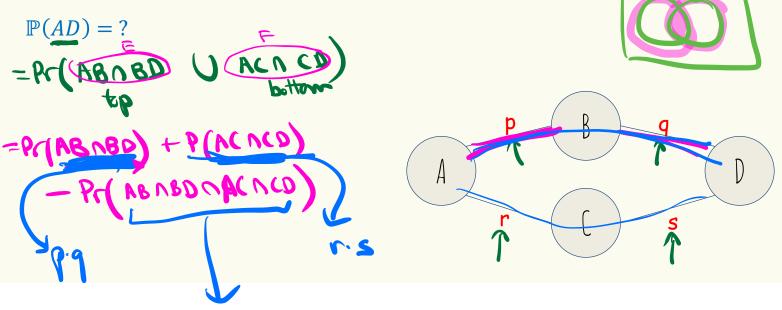
pollev/annakarlin185

Often probability space (Ω, \mathbb{P}) is **defined** using independence

Example – Network Communication

Each link works with the probability given, **independently**.

What's the probability A and D can communicate?



end event

Pr(EUF)=P(E)+P(F)

Can mobily exclusive every be 1'
$$-indep$$
 events A,B

P(A \(B \)) = P(A) \(P(B) \)

Example – Network Communication

 $\mathbb{P}(AC \cap CD) = \mathbb{P}(AC) \cdot \mathbb{P}(CD) = rs$

Each link works with the probability given, **independently**. What's the probability A and D can communicate?

$$\mathbb{P}(AD) = \mathbb{P}(AB \cap BD \text{ or } AC \cap CD)$$

$$= \mathbb{P}(AB \cap BD) + \mathbb{P}(AC \cap CD) - \mathbb{P}(AB \cap BD \cap AC \cap CD)$$

$$\mathbb{P}(AB \cap BD) = \mathbb{P}(AB) \cdot \mathbb{P}(BD) = pq$$

r

S

$$\mathbb{P}(AB \cap BD \cap AC \cap CD) = \mathbb{P}(AB) \cdot \mathbb{P}(BD) \cdot \mathbb{P}(AC) \cdot \mathbb{P}(CD) = pqrs$$

Example - Biased coin

We have a biased coin comes up Heads with probability 2/3; Each flip is independent of all other fips. Suppose it is tossed 3 times.

$$\mathbb{P}(HHH) = \Pr(H)\Pr(H)\Pr(H) = \begin{pmatrix} \frac{3}{3} \end{pmatrix}$$

$$\mathbb{P}(TTT) = \Pr(T)\Pr(T)\Pr(T) = \begin{pmatrix} \frac{1}{3} \end{pmatrix}^{3}$$

$$\mathbb{P}(HTT) = \Pr(H)\Pr(T)\Pr(T) = \begin{pmatrix} \frac{1}{3} \end{pmatrix}^{3}$$

Example - Biased coin

We have a biased coin comes up Heads with probability 2/3, independently of other flips. Suppose it is tossed 3 times.

$$\mathbb{P}(2 \text{ heads in 3 tosses}) = - P(HHT, HTH, THH)$$

https://pollev.com/ annakarlin185

