Lecture 4: Intro to discrete probability
Probability

• We want to model uncertainty.
 – i.e., outcome not determined a-priori
 – E.g. throwing dice, flipping a coin...
 – We want to numerically measure likelihood of outcomes = probability.
 – We want to make complex statements about these likelihoods.
• We will not argue why a certain physical process realizes the probabilistic model we study
 – Why is the outcome of the coin flip really “random”?
• First part of class: “Discrete” probability theory
 – Experiment with finite / discrete set of outcomes.
 – Will explore countably infinite and continuous outcomes later
Agenda

• Events
• Probability
• Equally Likely Outcomes
• Probability Axioms and Beyond Equally Likely Outcomes
• More Examples
Definition. A sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Single coin flip: $\Omega = \{H, T\}$
- Two coin flips: $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
Events

Definition. An event $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:

- Getting at least one head in two coin flips: $E = \{HH, HT, TH\}$
- Rolling an even number on a die: $E = \{2, 4, 6\}$
Events

Definition. An event $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:
- Getting at least one head in two coin flips: $E = \{HH, HT, TH\}$
- Rolling an even number on a die: $E = \{2, 4, 6\}$

Definition. Events E and F are **mutually exclusive** if $E \cap F = \emptyset$ (i.e., can’t happen at same time)

Examples:
- For dice rolls: If $E = \{2, 4, 6\}$ and $F = \{1, 5\}$, then $E \cap F = \emptyset$
Example: 4-sided Dice

Suppose I roll two 4-sided dice. Let D_1 be the value of the blue die and D_2 be the value of the red die. To the right is the sample space (possible outcomes).

What outcomes match these events?

A. $D_1 = 1$

B. $D_1 + D_2 = 6$

C. $D_1 = 2 \times D_2$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1,1)</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
</tr>
<tr>
<td>2</td>
<td>(2,1)</td>
<td>(2,2)</td>
<td>(2,3)</td>
<td>(2,4)</td>
</tr>
<tr>
<td>3</td>
<td>(3,1)</td>
<td>(3,2)</td>
<td>(3,3)</td>
<td>(3,4)</td>
</tr>
<tr>
<td>4</td>
<td>(4,1)</td>
<td>(4,2)</td>
<td>(4,3)</td>
<td>(4,4)</td>
</tr>
</tbody>
</table>
Example: 4-sided Dice

Suppose I roll two 4-sided dice. Let D_1 be the value of the blue die and D_2 be the value of the red die. To the right is the sample space (possible outcomes).

What outcomes match these events?

A. $D_1 = 1$

 $A = \{(1,1), (1,2), (1,3), (1,4)\}$

B. $D_1 + D_2 = 6$

 $B = \{(2,4), (3,3), (4,2)\}$

C. $D_1 = 2 \times D_2$

 $C = \{(2, 1), (4, 2)\}$

\[\begin{array}{cccc}
&D1 & & \\
\hline
1 & (1, 1) & (1, 2) & (1, 3) & (1, 4) \\
2 & (2, 1) & (2, 2) & (2, 3) & (2, 4) \\
3 & (3, 1) & (3, 2) & (3, 3) & (3, 4) \\
4 & (4, 1) & (4, 2) & (4, 3) & (4, 4) \\
\end{array}\]
Example: 4-sided Dice, Mutual Exclusivity

Are A and B mutually exclusive?
How about B and C?
https://pollev.com/annakarlin185

A. $D_1 = 1$

B. $D_1 + D_2 = 6$

C. $D_1 = 2 \times D_2$

<table>
<thead>
<tr>
<th>A & B</th>
<th>B & C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(b) Yes</td>
<td>No</td>
</tr>
<tr>
<td>(c) No</td>
<td>Yes</td>
</tr>
<tr>
<td>(d) No</td>
<td>No</td>
</tr>
</tbody>
</table>

Die 1 (D_1)

Die 2 (D_2)
Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples
Idea: Probability

A **probability** is a number (between 0 and 1) describing how likely a particular outcome will happen.

Will define a function

$$\mathbb{P}: \Omega \rightarrow [0, 1]$$

that maps outcomes $$\omega \in \Omega$$ to probabilities.

– Also use notation: $$\mathbb{P}(\omega) = P(\omega) = \Pr(\omega)$$
Example – Coin Tossing

Imagine we toss one coin – outcome can be heads or tails.

\[\Omega = \{H, T\} \]

depends! What do we want to model?!

Fair coin toss

\[\mathbb{P}(H) = \mathbb{P}(T) = \frac{1}{2} = 0.5 \]
Example – Coin Tossing

Imagine we toss one coin – outcome can be heads or tails.

$$\Omega = \{H, T\}$$

$$\mathbb{P}$$? Depends! What do we want to model?!

Bent coin toss (e.g., biased or unfair coin)

$$\mathbb{P}(H) = 0.85, \quad \mathbb{P}(T) = 0.15$$
Definition. A (discrete) probability space is a pair \((\Omega, \mathbb{P})\) where:

- \(\Omega\) is a set called the **sample space**.
- \(\mathbb{P}\) is the **probability measure**, a function \(\mathbb{P}: \Omega \to [0,1]\) such that:
 - \(\mathbb{P}(\omega) \geq 0\) for all \(\omega \in \Omega\)
 - \(\sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1\)
Probability space

Definition. A (discrete) **probability space** is a pair \((\Omega, \mathbb{P})\) where:

- \(\Omega\) is a set called the **sample space**.
- \(\mathbb{P}\) is the **probability measure**, a function \(\mathbb{P}: \Omega \to [0, 1]\) such that:
 - \(\mathbb{P}(\omega) \geq 0\) for all \(\omega \in \Omega\)
 - \(\sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1\)

Some outcome must show up

The likelihood (or probability) of each outcome is non-negative.

Either finite or infinite countable (e.g., integers)

Set of possible elementary outcomes

Specify Likelihood (or probability) of each elementary outcome
Uniform Probability Space

Definition. A **uniform probability space** is a pair (Ω, \mathbb{P}) such that

$$\mathbb{P}(x) = \frac{1}{|\Omega|}$$

for all $x \in \Omega$.

Examples:

- Fair coin $P(x) = \frac{1}{2}$
- Fair 6-sided die $P(x) = \frac{1}{6}$

$$\sum_{\omega \in \Omega} \mathbb{P}(\omega) = \sum_{\omega \in \Omega} \frac{1}{|\Omega|} = 1$$
Events

Definition. An event in a probability space \((\Omega, \mathbb{P})\) is a subset \(\mathcal{A} \subseteq \Omega\). Its probability is

\[\mathbb{P}(\mathcal{A}) = \sum_{\omega \in \mathcal{A}} \mathbb{P}(\omega) \]

Convenient abuse of notation: \(\mathbb{P}\) is extended to be defined over sets. \(\mathbb{P}(\omega) = \mathbb{P}({\omega})\)
Agenda

• Events
• Probability
• Equally Likely Outcomes
• Probability Axioms and Beyond Equally Likely Outcomes
• More Examples
Think back to 4-sided die. Suppose each die is fair. What is the probability of event \(B \)? \(\Pr(B) = ? \? ? \)

B. \(D_1 + D_2 = 6 \) \[B = \{(2,4), (3,3)(4,2)\} \]

\[
\Pr(\text{B}_1 + \text{B}_2 = 6) = \frac{3}{16}
\]
Equally Likely Outcomes

If \((\Omega, P)\) is a **uniform** probability space, then for any event \(E \subseteq \Omega\), then

\[
P(E) = \frac{|E|}{|\Omega|}
\]

This follows from the definitions of the prob. of an event and uniform probability spaces.

\[
\text{Pr}(E) = \sum_{\omega \in E} \text{Pr}(\omega) = \sum_{\omega \in E} \frac{1}{|\Omega|} = \frac{|E|}{|\Omega|}
\]
Example – Coin Tossing

Toss a coin 100 times. Each outcome is equally likely. What is the probability of seeing 50 heads?

\[\Pr(E) = \frac{1E!}{121} \]

\[|E| = 2^{100} \]

\[|E| = \binom{100}{50} \]

(A) \(\frac{1}{2} \)

(B) \(\frac{1}{250} \)

(C) \(\frac{\binom{100}{50}}{2^{100}} \)

(D) Not sure

https://pollev.com/annakarlin185
Brain Break
Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples
Axioms of Probability

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events. Note this is applies to any probability space (not just uniform).

Axiom 1 (Non-negativity): $P(E) \geq 0$.
Axiom 2 (Normalization): $P(\Omega) = 1$
Axiom 3 (Countable Additivity): If E and F are mutually exclusive, then $P(E \cup F) = P(E) + P(F)$

Corollary 1 (Complementation): $P(E^c) = 1 - P(E)$.
Corollary 2 (Monotonicity): If $E \subseteq F$, $P(E) \leq P(F)$
Corollary 3 (Inclusion-Exclusion): $P(E \cup F) = P(E) + P(F) - P(E \cap F)$
Definition. A (discrete) **probability space** is a pair \((\Omega, \mathbb{P})\) where:

- \(\Omega\) is a set called the **sample space**.
- \(\mathbb{P}\) is the **probability measure**, a function \(\mathbb{P}: \Omega \rightarrow [0,1]\) such that:
 - \(\mathbb{P}(\omega) \geq 0\) for all \(\omega \in \Omega\)
 - \(\sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1\)

Some outcome must show up

The likelihood (or probability) of each outcome is non-negative.
Non-equally Likely Outcomes

Probability spaces can have non-equally likely outcomes.
More Examples of Non-equally Likely Outcomes
Agenda

• Events
• Probability
• Equally Likely Outcomes
• Probability Axioms and Beyond Equally Likely Outcomes
• More Examples
Suppose I had a two, fair, 6-sided dice that we roll once each. What is the probability that we see **at least one 3 in the two rolls**.

\[\mathcal{E} = \{(1,1), (1,2), \ldots, (6,6)\} \]

\[|\mathcal{E}| = 36. \]

E: outcomes that include at least one 3

\[\Pr(E) = 1 - \Pr(E^c) \]

\[= 1 - \frac{|E^c|}{|\mathcal{E}|} = 1 - \frac{25}{36} = \frac{11}{36} \]
Example: Birthday “Paradox”

Suppose we have a collection of \(n \) people in a room. What is the probability that at least 2 people share a birthday? Assuming there are 365 possible birthdays, with uniform probability for each day.

\[
E = E^c = \Omega \setminus E
\]

\[
\mathbb{P}(E) = 1 - \mathbb{P}(E^c) = 1 - \frac{1}{365^n}
\]

\[
|E| = 365 \cdot 364 \cdots 365-n+1 = \frac{365!}{(365-n)!} = \binom{365}{n}
\]
Example: Birthday “Paradox” cont.

\[1 - \frac{P(365, n)}{365^n} \]

\[n = 23 \quad \text{> 0.5} \]
\[n = 60 \quad \text{> 0.98} \]

May 8

Pr(group of people I screen who has bday)

\[= 1 - \text{Pr}(\text{nobody has bday}) = 1 - \left(\frac{364^n}{365^n} \right) \]

n = 23

64

0.06

64

0.16

150

0.23
Example: Birthday “Paradox” cont.