CSE 312 Foundations of Computing II

Lecture 3: Pigeonhole principle + practice with counting

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ③

1

Recap(1)

Product Rule: In a sequential process, there are

- n_1 choices for the first step,
- n_2 choices for the second step (given the first choice), ..., and
- n_m choices for the m^{th} step (given the previous choices),

then the total number of outcomes is $n_1 \times n_2 \times \cdots \times n_m$

Application. # of k-element sequences of distinct symbols (a.k.a. k-permutations) from n-element set is $P(n,k) = n \times (n-1) \times \dots \times (n-k+1) = \frac{n!}{(n-k)!}$

Recap (2)

Combination: If order does not matter, then count the number of ordered objects, and then divide by the number of orderings

Applications. The number of subsets of size k of a set of size n is

$\binom{n}{1}$	_	n!
$\binom{k}{k}$	_	k! (n-k)!

Binomial coefficient (verbalized as "*n* choose *k*")

Agenda

- Pigeonhole Principle
- More practice with counting

Pigeonhole Principle (PHP): Idea

10 pigeons, 9 pigeonholes

Pigeonhole Principle: Idea

If 11 children have to share 3 cakes, at least one cake must be shared by how many children?

Pigeonhole Principle – More generally

If there are *n* pigeons in k < n holes, then one hole must contain at least $\frac{n}{k}$ pigeons!

Proof. Assume there are $<\frac{n}{k}$ pigeons per hole. Then, there are $< k\frac{n}{k} = n$ pigeons overall. Contradiction!

Pigeonhole Principle – Better version

If there are *n* pigeons in k < n holes, then one hole must contain at least $\left[\frac{n}{k}\right]$ pigeons!

Pigeonhole Principle – Better version

If there are *n* pigeons in k < n holes, then one hole must contain at least $\left[\frac{n}{k}\right]$ pigeons!

Reason. Can't have fractional number of pigeons

Syntax reminder:

- Ceiling: [x] is x rounded up to the nearest integer (e.g., [2.731] = 3)
- Floor: [x] is x rounded down to the nearest integer (e.g., [2.731] = 2)

Pigeonhole Principle – Example

In a room with 367 people, there are at least two with the same birthday.

Solution:

- 1. **367** pigeons = people
- 2. **365** holes = possible birthdays
- 3. Person goes into hole corresponding to own birthday
- 4. By PHP, there must be two people with the same birthday

Pigeonhole Principle: Strategy

To use the PHP to solve a problem, there are generally 4 steps:

- 1. Identify pigeons
- 2. Identify pigeonholes
- 3. Specify a rule for assigning pigeons to pigeonholes
- 4. Apply PHP

Pigeonhole Principle – Example (Surprising?)

In every set *S* of 100 integers, there are at least **two** elements whose difference is a multiple of 37.

When solving a PHP problem:

- 1. Identify pigeons
- 2. Identify pigeonholes
- 3. Specify how pigeons are assigned to pigeonholes
- 4. Apply PHP

Agenda

- Pigeonhole Principle
- More practice with counting

Quick Review of Cards

How many possible 5 card hands?

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades
- A **straight** is five consecutive rank cards of any suit. How many possible straights?

Counting Cards II

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades

A **flush** is a five card hand all of the same suit. How many possible flushes?

Counting Cards III

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades

A **flush** is five card hand all of the same suit. How many possible flushes?

$$4 \cdot \binom{13}{5} = 5148$$

How many flushes are **NOT** straights?

Counting Cards III

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades
- A flush is five card hand all of the same suit. How many possible flushes?

$$4 \cdot \binom{13}{5} = 5148$$

• How many flushes are NOT straights?

= #flush - #flush and straight $\left(4 \cdot \binom{13}{5} = 5148\right) - 10 \cdot 4$

For each object constructed, it should be possible to reconstruct the **unique** sequence of choices that led to it.

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it. No sequence → under counting Many sequences → over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

$$\begin{pmatrix} 4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 49 \\ 2 \end{pmatrix}$$

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it. No sequence \rightarrow under counting Many sequences \rightarrow over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then $\begin{pmatrix} 4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 49 \\ 2 \end{pmatrix}$

- Poll:
- A. Correct
- B. Overcount
- C. Undercount

https://pollev.com/ annakarlin185

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it. No sequence → under counting Many sequences → over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

$$\begin{pmatrix} 4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 49 \\ 2 \end{pmatrix}$$

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it. No sequence → under counting Many sequences → over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

When in doubt, break up into disjoint sets you know how to count, and then use the sum rule.

For each object constructed, it should be possible to reconstruct the **unique** sequence of choices that led to it. No sequence \rightarrow under counting Many sequences \rightarrow over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces? (1)

Use the sum rule

$$\begin{pmatrix} 4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 48 \\ 2 \end{pmatrix}$$

- = # 5 card hand containing exactly 3 Aces
- + # 5 card hand containing exactly 4 Aces

8 by 8 chessboard

How many ways to place a pawn, a bishop, and a knight so that none are in the same row or column ?

Poll: A. $\binom{64}{3}$ B. $\binom{8}{3} \cdot \binom{8}{3}$ C. $8^2 \cdot 7^2 \cdot 6^2$ D. I don't know.

https://pollev.com/ annakarlin185

8 by 8 chessboard

How many ways to place a pawn, a bishop, and a knight so that none are in the same row or column ?

Sequential process:

- 1. Column for pawn
- 2. Row for pawn
- 3. Column for bishop
- 4. Row for bishop
- 5. Column for knight
- 6. Row for knight

 $(8\cdot 7\cdot 6)^2$

Rooks on chessboard

How many ways to place two identical rooks on a chessboard so that they don't share a row or a column

Poll:
A.
$$8^2 \cdot 7^2$$

B. $\binom{8}{2} \cdot \binom{8}{2}$
C. $\frac{8^2 \cdot 7^2}{2}$
D. I don't know.

https://pollev.com/ annakarlin185

Rooks on chessboard

How many ways to place two identical rooks on a chessboard so that they don't share a row or a column

Pretend Rooks are different

- 1. Column for rook1
- 2. Row for rook1
- 3. Column for rook2
- 4. Row for rook2

 $(8 \cdot 7)^2$

Remove the order between two rooks

 $(8 \cdot 7)^2/2$

Random Picture

You go to top pot to buy a dozen donuts. Your choices are Chocolate, Lemon-filled, Maple, Glazed, Plain How many ways are there to choose a dozen doughnuts when doughnuts of the same type are indistinguishable?

Product Rule: In a sequential process, there are

- n_1 choices for the first step,
- n₂ choices for the second step (given the first choice), ..., and
- n_m choices for the m^{th} step (given the previous choices),

then the total number of outcomes is $n_1 \times n_2 \times \cdots \times n_m$

You go to top pot to buy a dozen donuts. Your choices are Chocolate, Lemon-filled, Maple, Glazed, Plain How many ways are there to choose a dozen doughnuts when doughnuts of the same type are indistinguishable?

Try 1: First choose # of Chocolate, then # Lemon, then # Maple, then # Glazed, then # Plain

Product Rule: In a sequential process, there are

- n_1 choices for the first step,
- n₂ choices for the second step (given the first choice), ..., and
- n_m choices for the m^{th} step (given the previous choices),

then the total number of outcomes is $n_1 \times n_2 \times \cdots \times n_m$

You go to top pot to buy a dozen donuts. Your choices are Chocolate, Lemon-filled, Maple, Glazed, Plain How many ways are there to choose a dozen doughnuts when doughnuts of the same type are indistinguishable?

Try 2: First choose type of donut 1, then type of donut 2,...., then type of donut 12.

Product Rule: In a sequential process, there are

- n_1 choices for the first step,
- n₂ choices for the second step (given the first choice), ..., and
- n_m choices for the m^{th} step (given the previous choices),

then the total number of outcomes is $n_1 \times n_2 \times \cdots \times n_m$

Bijection Rule

If there is a bijection (one-to-one and onto mapping) between set A and set B, then |A| = |B|.

There is a bijection between sequences of length 16 with 4 bars and 12 stars and the doughnut choices.

You go to top pot to buy a dozen donuts. Your choices are Chocolate, Lemon-filled, Maple, Glazed, plain How many ways are there to choose a dozen doughnuts when doughnuts of the same type are indistinguishable?

There is a bijection between sequences of length 16 with 4 bars and 12 stars and the doughnut choices.

You go to top pot to buy a dozen donuts. Your choices are Chocolate, Lemon-filled, Maple, Glazed, plain How many ways are there to choose a dozen doughnuts when you want at least 1 of each type?

You go to top pot to buy a dozen donuts. Your choices are Chocolate, Lemon-filled, Maple, Glazed, plain How many ways are there to choose a dozen doughnuts when you want at least 1 of each type?

Mental process:

- 1. Place one donut in each flavor bin
- 2. Choose the remaining 7 donuts without restriction

$$\binom{7+5-1}{5-1}$$

Tools and concepts

- Sum rule, Product rule
- Permutations, combinations
- Inclusion-exclusion
- Binomial Theorem
- Combinatorial proofs
- Pigeonhole principle
- Stars and bars

