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Goal for today

• Introduce you to a fundamental machine learning problem: 
clustering.

• Give you a very gentle introduction to multivariate Gaussian 
distributions.
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Motivating application: Clustering images
Discover groups of 
similar images
- Ocean
- Pink flower
- Dog
- Sunset
- Clouds
- …

©2017 Emily Fox
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Another example: clustering documents

E.g. into international news, sports, culture, etc.

So how are these data represented?
• As points in d-dimensional space (where d is typically large).

©2017 Emily Fox
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How to approach clustering?  One way: k-means

One approach: called k-means

• Find some cluster centers.
• Assign each data item to closest center.
• Recompute cluster centers

©2017 Emily Fox

Equivalent to assuming
spherically symmetric clusters

Only center matters
Not cluster shapes

K-means picture From Stanford CS 221
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Failure modes of k-means clustering

©2017 Emily Fox

disparate cluster sizes overlapping clusters different 
shaped/oriented 
clusters
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Motivates probabilistic model: Mixture model

• Take uncertainty in assignment into account
e.g., when clustering documents, might want to say
54% chance document is world news, 45% science, 
1% sports, and 0% entertainment

• Allow for cluster shapes not just centers

• Enables learning different weightings of dimensions
- e.g., how much to weight each word in the vocabulary when computing cluster 

assignment

©2017 Emily Fox

Cluster 
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Cluster 3 Cluster 
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Mixture model
• k clusters, defined by probability distribution
over Gaussian random variables.

• 𝜋! , 𝜇! , 𝜎!" for each cluster.

• Problem: Assume that the data comes from such a distribution, and recover 
the parameters of the distribution.

• Determine, for each point, the likelihood of it belonging to cluster j, for each j.

©2017 Emily Fox
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Background:
Multivariate Gaussian distributions

©2017 Emily Fox
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Overly simple image representation

Consider average red, green, blue pixel intensities

©2017 Emily Fox

[R = 0.05, G = 0.7, B = 0.9]

[R = 0.85, G = 0.05, B = 0.35]

[R = 0.02, G = 0.95, B = 0.4]
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Distribution over all cloud images

Let’s look at just the blue dimension

©2017 Emily Fox

blue0.8
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Distribution over all sunset images

Let’s look at just the blue dimension

©2017 Emily Fox

blue0.3
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Distribution over all forest images

Let’s look at just the blue dimension

©2017 Emily Fox

blue0.42
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Distribution over all images

©2017 Emily Fox

blue
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Can be distinguished along other dim
Now look at the red dimension

©2017 Emily Fox

red0.90.05
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Model for a given image type

For each dim of the [R, G, B] vector, and each image type, assume 
a Gaussian distribution over color intensity

©2017 Emily Fox

blue0.8
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1D Gaussians

©2017 Emily Fox

μ

2σ

Fully specified by mean μ and variance σ2 (or st. dev. σ)

x

Random variable the 
distribution is over
e.g., blue intensity
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Density of 1D Gaussian distribution

©2017 Emily Fox

μ

σ σ

x

Density of normal r.v.
e.g., blue intensity

parameters

𝑓
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Covariance Matrix

Problem 1 on your current homework
𝐂𝐨𝐯 𝑿, 𝒀 = 𝔼 (𝑿 − 𝔼[𝑿])(𝒀 − 𝔼 𝒀 ) = 𝔼 𝑿𝒀 − 𝔼[𝑿]𝔼[𝒀]

Given set of random variables 𝑋!, 𝑋", … ,𝑋#
The “covariance matrix” 

Σ =
Cov(𝑋!, 𝑋!) ⋯ Cov(𝑋!, 𝑋#)

⋮ Cov(𝑋$ , 𝑋%) ⋮
Cov(𝑋# , 𝑋!) ⋯ Cov(𝑋# , 𝑋#)
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Bivariate Gaussian 
(2 dimensions)

Fully specified by means μ
and covariance matrix Σ

©2017 Emily Fox
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Multivariate Gaussian 
(example – bivariate)

Fully specified by means μ
and covariance matrix Σ

©2017 Emily Fox
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𝑓

𝑓(𝑥)

1-dimensional

Multi-dimensional
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Covariance structure

Σ = σ2 0
0 σ2

©2017 Emily Fox

𝑓

𝑓

pr
ob

ab
ili

ty



CSE 446: Machine Learning24

Covariance structure
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Σ = σB
2 σB,G

σG,B σG
2
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Advanced…

Bishop
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Multivariate Gaussian density

©2017 Emily Fox

f (x | μ, Σ)

Random vector
e.g., [R, G, B] intensities

parameters
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Clustering using mixture model

©2017 Emily Fox
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Model as Gaussian per category/cluster

©2017 Emily Fox

blue0.3

blue0.8

blue0.42

Forests

Sunsets

Clouds
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Jumble of unlabeled images

©2017 Emily Fox

blue

HISTOGRAM

How do we model this 
distribution?
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Combination of weighted Gaussians

Associate a weight πk with each Gaussian component

©2017 Emily Fox

x

π2

π1

π3

π = [0.47  0.26  0.27]
π1 π2 π3

Fraction of each class in world from 
which we get data

0 ≤ πk ≤ 1

πk = 1
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Mixture of Gaussians (1D)

Each mixture component represents a unique cluster specified 
by:  {πk , μk , σk }

©2017 Emily Fox
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Mixture of Gaussians (general)

Each mixture component represents a 
unique cluster specified by: 

{πk , μk , Σk }

©2017 Emily Fox

π1

π2

π3

μ3,Σ3

μ1,Σ1

μ2,Σ2



CSE 446: Machine Learning35

Mixture model
• K clusters, defined by the following unknown 
parameters

• Problem: Assume that the data comes from such a distribution, and 
recover the parameters of the distribution (e.g. MLE)

• Determine, for each point, the likelihood of it belonging to cluster j, 
for each j.

©2017 Emily Fox
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Two1-D Gaussians, with unknown mean and 
variance
• Easy if know the source of each data point.

Images dues to Victor Lavrenko
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Two1-D Gaussians, with unknown mean and 
variance
• Easy if know the source of each data point.

• What if we don’t know the source?

Images dues to Victor Lavrenko
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Mixture model
• K clusters, defined by the following parameters

• Problem: Assume that the data comes from such a distribution, and
recover the parameters of the distribution.

• Determine, for each point, the likelihood of it belonging to cluster j, 
for each j.

• PROBLEM: no closed form solution

©2017 Emily Fox
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Expectation Maximization Algorithm

©2017 Emily Fox
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Two step approach based on following observation

• If we knew which cluster each sample was from, we could 
estimate all the parameters.

• If we knew all the parameters we could estimate the chance 
each point came from each cluster.

• EM is an iterative algorithm that alternates between these two 
steps.

©2017 Emily Fox
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