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Goal for today

* Introduce you to a fundamental machine learning problem:
clustering.

* Give you a very gentle introduction to multivariate Gaussian
distributions.
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Motivating application: Clustering images

Discover groups of
similar images

— Ocean

- Pink flower

- Dog

— Sunset

— Clouds
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Another example: clustering documents

E.g. into international news, sports, culture, etc.

So how are these data represented?
* As points in d-dimensional space (where d is typically large).
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How to approach clustering? One way: k-means

x ™ " X
kot Only center matters
Not cluster shapes
(a) (b) (c)

Equivalent to assuming
- s o spherically symmetric clusters

(d) (e) (f)
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Failure modes of k-means clustering
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A
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disparate cluster sizes overlapping clusters different

shaped/oriented
clusters
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Motivates probabilistic model: Mixture model

* Take uncertainty in assignment into account
e.g., when clustering documents, might want to say
54% chance document is world news, 45% science,
1% sports, and 0% entertainment

.;n:t‘j“}@h
Cluster

4

Cluster 3 Cluster
4

* Allow for cluster shapes not just centers

* Enables learning different weightings of dimensions

— e.g., how much to weight each word in the vocabulary when computing cluster
assignment
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Mixture model

* k clusters, defined by probability distribution
over Gaussian random variables.

k
m;, Wi, of foreachcluster. > m=1.
j=1

* Problem: Assume that the data comes from such a distribution, and recover
the parameters of the distribution.

* Determine, for each point, the likelihood of it belonging to cluster j, for eachj.
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Background:
Multivariate Gaussian distributions
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Overly simple image representation

Consider average red, green, blue pixel intensities

[R=0.85,G=0.05,B=0.35]
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Distribution over all cloud images

Let’s look at just the blue dimension

i

0.8 blue
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Distribution over all sunset images

Let’s look at just the blue dimension

0.3 blue
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Distribution over all forest images

Let’s look at just the blue dimension

0.42 blue
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Distribution over all images
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Can be distinguished along other dim

Now look at the red dimension

0.05 0.9 red
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Model for a given image type

For each dim of the [R, G, B] vector, and each image type, assume
a Gaussian distribution over color intensity

0.8 blue
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1D Gaussians

Fully specified by mean p and variance 02 (or st. dev. O)

Random variable the
distribution is over
e.g., blue intensity
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Density of 1D Gaussian distribution

f (zlp,0?) = (QW;)UQ EXP{—QT;(I— #)2}
H_J

parameters

Density of normal r.v.
e.g., blue intensity
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Covariance Matrix

Problem 1 on your current homework
Cov(X,Y) = E|[(X — E[X])(Y — E[Y])] = E|XY] — E[X]E[Y]

Given set of random variables X4, X5, ... , X,

The “covariance matrix”

[Cov(Xq,X1)

Cov(Xp, X1)

COV(Xi, Xj)

Cov(Xy, X;) |

COV(Xn»Xn)_
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Bivariate Gaussian
(2 dimensions)

Fully specified by means
and covariance matrix 2

M= [IJ-que ’ ugreen]

2
z — O-blue 0-blue,green

2
Ugreen,blue 0-green
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covariance determines
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orientation + spread
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Multivariate Gaussian
(example — bivariate)

Fully specified by means
and covariance matrix 2

M= [U-blue ’ ugreen]

2
z — O-blue O-blue,green

2
Ugreen,blue 0-green

covariance determines
orientation + spread
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Multi-dimensional

f x|, 2) =
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1
N
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1-dimensional

f(x)

1

(2mo2

e Wexp{—ri?(:r — ,u)Q}
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Covariance structure |
i 1 Ty-1y
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probability
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Advanced...

Figure 2.7 The red curve shows the ellip-
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tical surface of constant proba-
bility density for a Gaussian in
a two-dimensional space x =
(z1,z2) on which the density
is exp(—1/2) of its value at
x = p. The major axes of
the ellipse are defined by the
eigenvectors u; of the covari-
ance matrix, with correspond-
ing eigenvalues A;.
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Multivariate Gaussian density

V 27X

fix|u2)
“——

parameters

foxin,®) = — o {~Jx— W= x - )}

Random vector
e.g., [R, G, B] intensities

28 ©2017 Emily Fox CSE 446: Machine Learning



Clustering using mixture model
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Model as Gaussian per category/cluster

j\. Forests
0.42
/\ Sunsets
0.3
Clouds
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Jumble of unlabeled images

HISTOGRAM

blue

How do we model this
distribution?

©2017 Emily Fox

CSE 446: Machine Learning



32

Combination of weighted Gaussians

Associate a weight 11, with each Gaussian component

m, T, T,

T = [0.47 0.26 0.27]

LLE!

Vo

Fraction of each class in world from
which we get data
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Mixture of Gaussians (1D)

Each mixture component represents a unique cluster specified
2

by: {ﬂk/ luk/ 07<}
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Mixture of Gaussians (general)

Each mixture component represents a
unique cluster specified by:

u# . (T, M, Z)
e

uE./Z3

MZIZZ
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Mixture model

* K clusters, defined by the following unknown
parameters

© = {7Tj>“j>2j}§=1 ;”:1:1-

* Problem: Assume that the data comes from such a distribution, and
recover the parameters of the distribution (e.g. MLE)

* Determine, for each point, the likelihood of it belonging to cluster j,
for eachj.
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Two1l-D Gaussians, with unknown mean and
variance

* Easy if know the source of each data point.

©C O 0O © Coee ©

—O—0 00

Images dues to Victor Lavrenko
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Two1l-D Gaussians, with unknown mean and
variance

* Easy if know the source of each data point.
©O O 00 o o

/I\
—tt) @ QO e.ose .. .

e What if we don’t know the source?

O O 0O O GO0 O
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Mixture model

* K clusters, defined by the following parameters

© = {7Tj>“j>2j}§=1 ;”:1:1-

* Problem: Assume that the data comes from such a distribution, and
recover the parameters of the distribution.

* Determine, for each point, the likelihood of it belonging to cluster j,
for eachj.

e PROBLEM: no closed form solution
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Expectation Maximization Algorithm
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Two step approach based on following observation

* |If we knew which cluster each sample was from, we could
estimate all the parameters.

* |f we knew all the parameters we could estimate the chance
each point came from each cluster.

* EM is an iterative algorithm that alternates between these two
steps.
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