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Goal for today

* Introduce you to a fundamental machine learning problem:
clustering.

* Give you a very gentle introduction to multivariate Gaussian
distributions.
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Motivating application: Clustering images

Discover groups of A e T
similar images e ‘Eﬂﬁtw.%ﬁ
e e
— Pink flower

— Dog e

— Sunset

— Clouds
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Another example: clustering documents

E.g. into international news, sports, culture, etc.

So how are these data represented?

* As points in d-dimensional space (where d is typically large).
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How to approach clustering? One way: k-means
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Failure modes of k-means clustering
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disparate cluster sizes overlapping clusters different

shaped/oriented
clusters
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Motivates probabilistic model: Mixture model

* Take uncertainty in assighment into account
e.g., when clustering documents, might want to say
54% chance document is world news, 45% science,

1% sports, and 0% entertainment

* Allow for cluster shapes not just centers

* Enables learning different weightings of dimensions
- e.g., how much to weight each word in the vocabulary when computing cluster

assignment
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Mixture model

* k clusters, defined by probability distribution
over Gaussian random variables.

k
7, py,0f foreachcluster. > m=1.
j=1

* Problem: Assume that the data comes from such a distribution, and recover
the parameters of the distribution.

* Determine, for each point, the likelihood of it belonging to cluster j, for each j.
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Background:
Multivariate Gaussian distributions
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Overly simple image representation

Consider average red, green, blue pixel intensities

o

[R=0.02,G=0.95, B =0.4]

[R=0.05,G=0.7,B=0.9]

[R=0.85,G =0.05, B=0.35]
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Distribution over all cloud images

Let’s look at just the blue dimension

il { R
0.8

blue
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Distribution over all sunset images

Let’s look at just the blue dimension

0.3 blue
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Distribution over all forest images

Let’s look at just the blue dimension

0.42 blue
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Distribution over all images

blue
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Can be distinguished along other dim

Now look at the red dimension

0.05 0.9 red
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Model for a given image type

For each dim of the [R, G, B] vector, and each image type, assume
a Gaussian distribution over color intensity

0.3 blue
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1D Gaussians

Fully specified by mean p and variance 02 (or st. dev. O)

Random variable the
distribution is over
e.g., blue intensity
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Density of 1D Gaussian distribution

f o) = o] gt~
H_J

parameters

Density of normal r.v.
e.g., blue intensity
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= (r-e0) (3-20)) POken 1y
Covariance Matrix (*3)

Problem 1 on your current homework

Cov(X,Y) = E[(X — [E!X!)(Y E[Y E[XY]| — E[X]E[Y]

leen set of random variables X, X5, ...

The “covariance matrix” .
J

Cov(Xy, X;,)
: Cov(X;, X; :
Cov(X,, X1) Cov(X,,X,)
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Bivariate Gaussian
(2 dimensions)
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probabilitv)

Fully specified by means p
and covariance matrix 2
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M= [ublue ’ ugreen]

covariance determines
orientation + spread
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Multivariate Gaussian
(example — bivariate)
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[N}
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probability)

Fully specified by means p
and covariance matrix 2

M= [ublue ’ ugreen]

2
Z - O-blue o-blue,green
2

O-green,blue o-green

covariance determines
orientation + spread
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Advanced...

Zigure 2.7 The red curve shows the ellip-
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tical surface of constant proba-
bility density for a Gaussian in
a two-dimensional space x =
(z1,z2) on which the density
is exp(—1/2) of its value at
x = p. The major axes of
the ellipse are defined by the
eigenvectors u; of the covari-
ance matrix, with correspond-
ing eigenvalues ;.
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Multivariate Gaussian den5|ty J) (2m0?)" p{ 27"t }
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Random vector
e.g., [R, G, B] intensities
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Clustering using mixture model
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Model as Gaussian per category/cluster

Forests

Sunsets

Clouds
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Jumble of unlabeled images

HISTOGRAM

K blue
How do we model this

distribution?
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Combination of weighted Gaussians

Associate a weight 11, with each Gaussian component

m, T
T = [0.47 0.26 0.27]

n Vo

Fraction of each class in world from

T, which we get data

Xv
oy
I
—_
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Mixture of Gaussians (1D)

Each mixture component represents a unique cluster specified
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Mixture of Gaussians (general)

Each mixture component represents a
unique cluster specified by:

{Trkr Hk; Zk}

"»’23
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Mixture model

e K clusters, defined by the following unknow
parameters

© = {mj, u;, 3} ;%:1-

* Problem: Assume that the data comes from such a distribution, and
recover the parameters of the distribution (e.g. MLE)

* Determine, for each point, the likelihood of it belonging to cluster j,
for eachj.

©2017 Emily Fox CSE 446: Machine Learning



36

Two1-D Gaussians, with unknown mean and
variance

* Easy if know the source of each data point.
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Two1-D Gaussians, with unknown mean and
variance

* Easy if know the source of each data point.
© O 00 @ 0000 ©
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e What if we don’t know the source?
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Mixture model

* K clusters, defined by the following parameters

© = {mj, ;. 3} Zl%:l-

* Problem: Assume that the data comes from such a distribution, and
recover the parameters of the distribution.

* Determine, for each point, the likelihood of it belonging to cluster j,
for eachj.

* PROBLEM: no closed form solution
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Expectation Maximization Algorithm
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Two step approach based on following observation

* |f we knew which cluster each sample was from, we could
estimate all the parameters.

* |f we knew all the parameters we could estimate the chance
each point came from each cluster.

* EM is an iterative algorithm that alternates between these two
steps.
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