CSE 312

Foundations of Computing II

Lecture 27: Multivariate Gaussians, clustering and EM

Anna R. Karlin

Slide Credit: Emily Fox

Incorporating some of my own from CSE 446 ☺

Quiz 3: Monday Dec 6 Final: Monday Dec 13 Details on both at top of web page under announcements

Goal for today

- Introduce you to a fundamental machine learning problem: clustering.
- Give you a very gentle introduction to multivariate Gaussian distributions.

Motivating application: Clustering images

Discover groups of similar images

- Ocean
- Pink flower
- Dog
- Sunset
- Clouds
- **–** ...

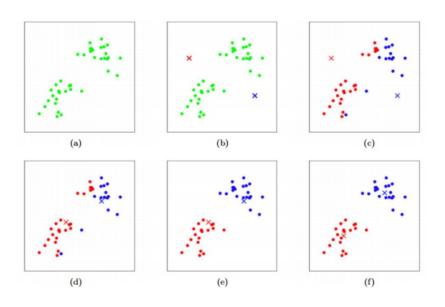
Another example: clustering documents

E.g. into international news, sports, culture, etc.

So how are these data represented?

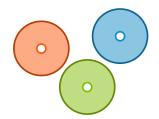
As points in d-dimensional space (where d is typically large).

How to approach clustering? One way: k-means

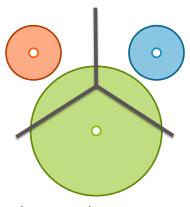


Only center matters Not cluster shapes

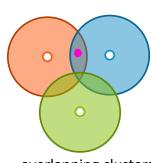
Equivalent to assuming spherically symmetric clusters



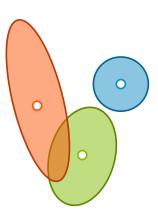
Failure modes of k-means clustering



disparate cluster sizes



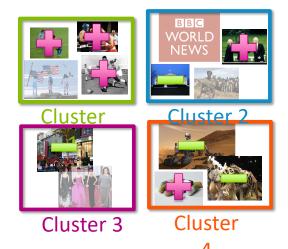
overlapping clusters



different shaped/oriented clusters

Motivates probabilistic model: Mixture model

- Take uncertainty in assignment into account e.g., when clustering documents, might want to say 54% chance document is world news, 45% science, 1% sports, and 0% entertainment
- Allow for cluster shapes not just centers



- Enables learning different weightings of dimensions
 - e.g., how much to weight each word in the vocabulary when computing cluster assignment

©2017 Emily Fox

Mixture model

- k clusters, defined by probability distribution over **Gaussian** random variables.
- π_i , μ_i , σ_i^2 for each cluster. $\sum_{j=1}^{\kappa} \pi_j = 1$.



- Problem: Assume that the data comes from such a distribution, and recover the parameters of the distribution.
- Determine, for each point, the likelihood of it belonging to cluster j, for each j.

Background: Multivariate Gaussian distributions

Overly simple image representation

Consider average red, green, blue pixel intensities

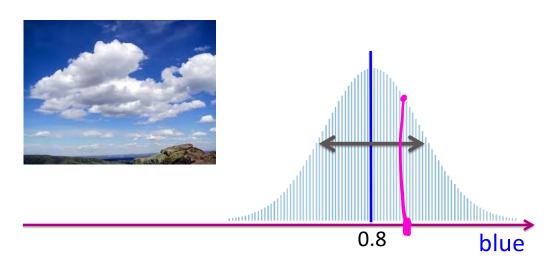
[R = 0.05, G = 0.7, B = 0.9]

[R = 0.85, G = 0.05, B = 0.35]

[R = 0.02, G = 0.95, B = 0.4]

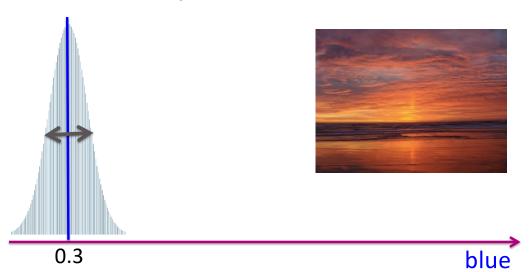
Distribution over all cloud images

Let's look at just the blue dimension



Distribution over all sunset images

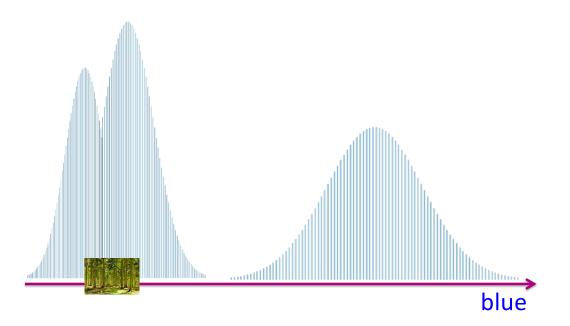
Let's look at just the blue dimension



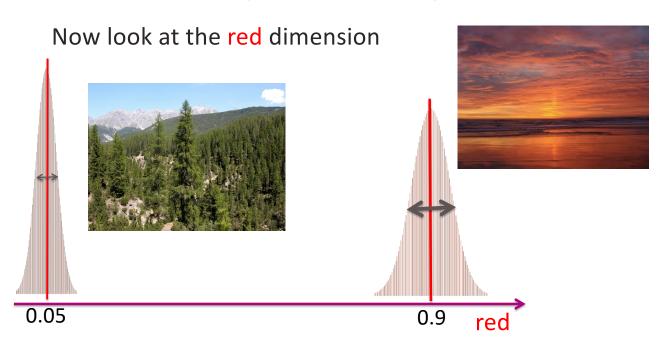
Distribution over all forest images

Let's look at just the blue dimension

Distribution over all images

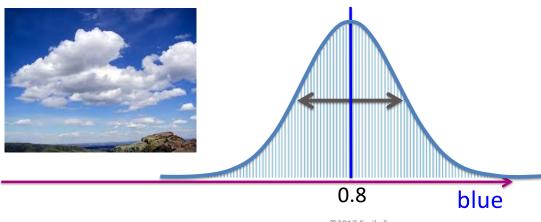


Can be distinguished along other dim



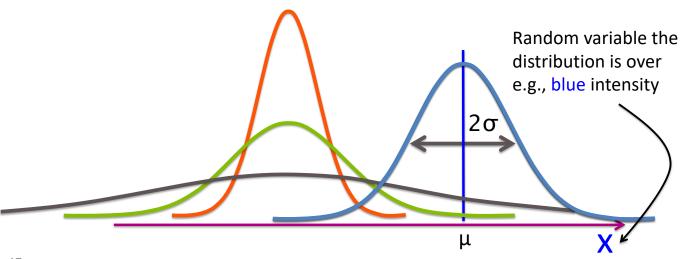
Model for a given image type

For each dim of the [R, G, B] vector, and each image type, assume a Gaussian distribution over color intensity



1D Gaussians

Fully specified by mean μ and variance σ^2 (or st. dev. σ)



Density of 1D Gaussian distribution

$$f\left(x|\mu,\sigma^2\right) = \frac{1}{\left(2\pi\sigma^2\right)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$
 parameters Density of normal r.v. e.g., blue intensity

$$\sum_{(X,y)} (x-E(X)) (y-E(Y)) R(X=x,Y=y)$$

Covariance Matrix

Problem 1 on your current homework

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

$$= (Y,Y)$$

Given set of random variables X_1, X_2, \dots, X_n

The "covariance matrix"

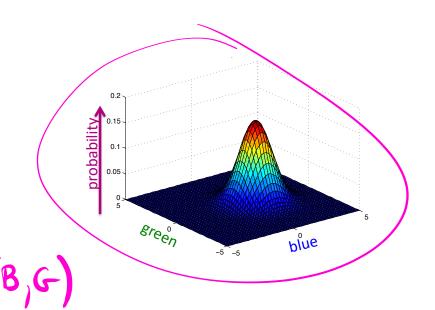
$$\Sigma = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \cdots & \operatorname{Cov}(X_1, X_n) \\ \vdots & \operatorname{Cov}(X_i, X_i) & \vdots \\ \operatorname{Cov}(X_n, X_1) & \cdots & \operatorname{Cov}(X_n, X_n) \end{bmatrix}$$

Bivariate Gaussian (2 dimensions)

Fully specified by means μ and covariance matrix Σ

$$\mu = [\mu_{blue}, \mu_{green}]$$

$$\Sigma = \begin{bmatrix} \sigma_{blue}^2 & \sigma_{green} \\ \sigma_{green,blue} & \sigma_{green}^2 \end{bmatrix}$$



covariance determines orientation + spread

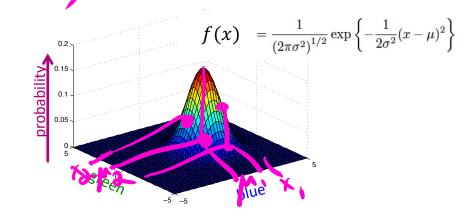
Multivariate Gaussian (example – bivariate)

Fully specified by means μ and covariance matrix Σ

$$\mu = [\mu_{\text{blue}}, \mu_{\text{green}}]$$

$$\Sigma = \begin{bmatrix} \sigma_{\text{blue}}^2 & \sigma_{\text{blue,green}} \\ \sigma_{\text{green,blue}} & \sigma_{\text{green}}^2 \end{bmatrix}$$

covariance determines orientation + spread



$$f(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}$$

exp{ }

©2017 Emily Fox

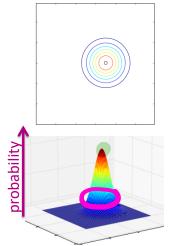
1-dimensional Multi-dimensional

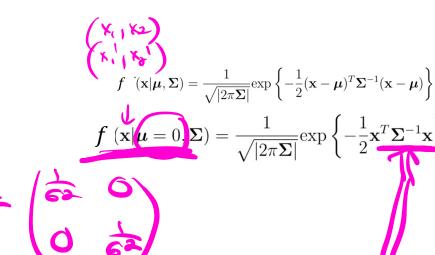
22

©2017 Emily Fox

Covariance structure

$$\Sigma = \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix}$$





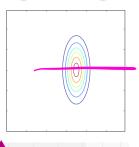
$$\begin{pmatrix} x_1 & x_2 & -6 & y \\ 0 & y & (x_2) & -6 &$$

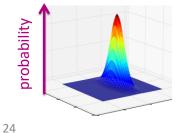
Covariance structure

$$f(\mathbf{x}|\boldsymbol{\mu} = 0, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2}\mathbf{x}^T \boldsymbol{\Sigma}^{-1}\mathbf{x}\right\}$$

$$\Sigma = \begin{bmatrix} \sigma_B^2 & 0 \\ 0 & \sigma_G^2 \end{bmatrix}$$



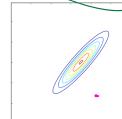


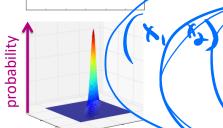


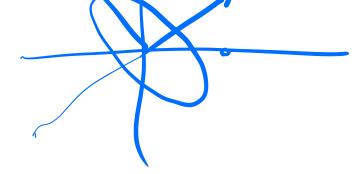
Covariance Structure

$$f(\mathbf{x}|\boldsymbol{\mu} = 0, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2}\mathbf{x}^T\boldsymbol{\Sigma}^{-1}\mathbf{x}\right\}$$

$$\Sigma = \begin{bmatrix} \sigma_{\text{B}}^2 & \sigma_{\text{B,G}} \\ \sigma_{\text{G,B}} & \sigma_{\text{G}}^2 \end{bmatrix}$$



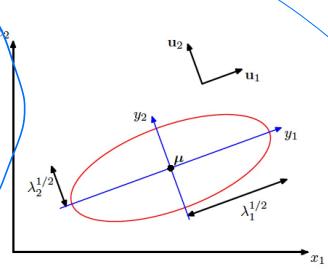




Advanced...

0.20

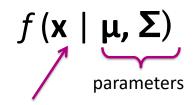
Figure 2.7 The red curve shows the elliptical surface of constant probability density for a Gaussian in a two-dimensional space $\mathbf{x} = (x_1, x_2)$ on which the density is $\exp(-1/2)$ of its value at $\mathbf{x} = \mu$. The major axes of the ellipse are defined by the eigenvectors \mathbf{u}_i of the covariance matrix, with corresponding eigenvalues λ_i .



Multivariate Gaussian density

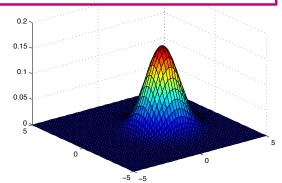
$$f(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

$$f(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

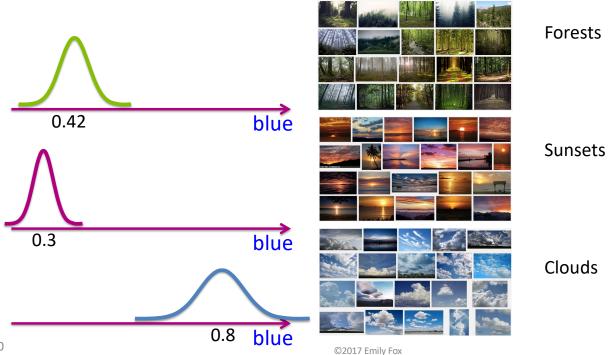


Random vector

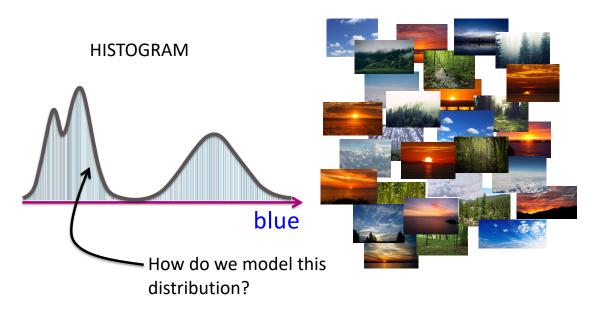
e.g., [R, G, B] intensities



Model as Gaussian per category/cluster

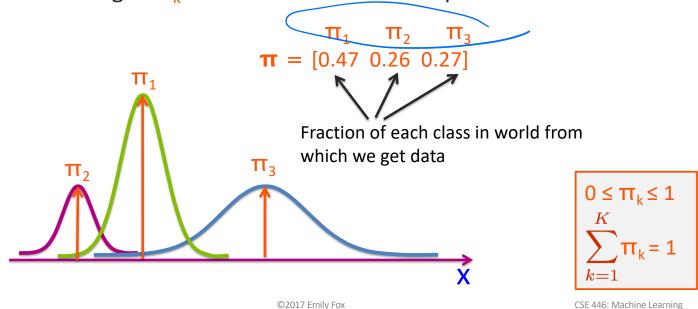


Jumble of unlabeled images



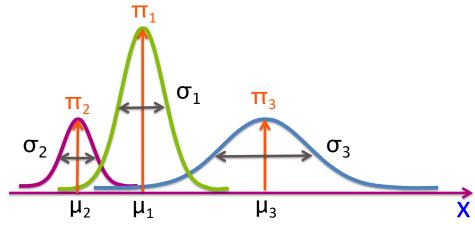
Combination of weighted Gaussians

Associate a weight π_k with each Gaussian component

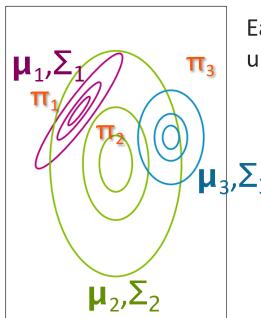


Mixture of Gaussians (1D)

Each mixture component represents a unique cluster specified by: $\{\pi_k, \mu_k, \sigma_k\}$



Mixture of Gaussians (general)



Each mixture component represents a unique cluster specified by:

$$\{\boldsymbol{\pi}_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}$$

©2017 Emily Fox CSE 446: Machine Learning

Mixture model

K clusters, defined by the following unknown parameters

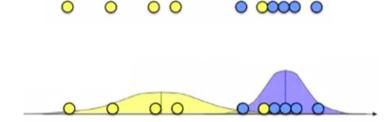
$$\mathbf{\Theta} = \{\pi_j, \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j\}_{j=1}^k$$

$$\sum_{j=1}^{k} \pi_j = 1.$$

- Problem: Assume that the data comes from such a distribution, and recover the parameters of the distribution (e.g. MLE)
- Determine, for each point, the likelihood of it belonging to cluster j, for each j.

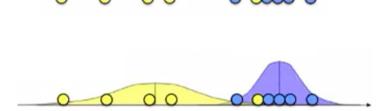
Two1-D Gaussians, with unknown mean and variance

• Easy if know the source of each data point.



Two1-D Gaussians, with unknown mean and variance

Easy if know the source of each data point.



What if we don't know the source?

Mixture model

K clusters, defined by the following parameters

$$\mathbf{\Theta} = \{\pi_j, \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j\}_{j=1}^k$$

$$\sum_{j=1}^k \pi_j = 1.$$

- Problem: Assume that the data comes from such a distribution, and recover the parameters of the distribution.
- Determine, for each point, the likelihood of it belonging to cluster j, for each j.
- PROBLEM: no closed form solution

Two step approach based on following observation

- If we knew which cluster each sample was from, we could estimate all the parameters.
- If we knew all the parameters we could estimate the chance each point came from each cluster.
- EM is an iterative algorithm that alternates between these two steps.

