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MLE Recipe

1. Input Given n iid samples x4, ..., x,, from parametric model with
parameter 6.

2. Likelihood Define your likelihood L(x4, ...., x,|0).
— Fordiscrete  L(xq,....,x,10) =112 Pr(x;; 6)
— For continuous L(xq, ..., x,|0) =[]i2, f(x;; 0)
3.Log Compute In L(x4, ....,x,|60)

4. Differentiate Compute aie InL(xq,....,x,(|0)
5. Solve for O by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a
maximum, but we won’t ask you to do that in CSE 312.



n samples x4, ..., x,, € R from Gaussian V' (i, 0?). Most
likely 1 and 0%?
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Two-parameter optimization

Normal outcomes x4, ..., x,,
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Goal: estimate 6; = | = expectationand 6, = ¢“ = variance
e 012
L(xl,....,xn|91, 92) — | —(/— e 20,
\/2m0O, ]
ln L(xl, .,xn|91, 62) —
n
o ln2nE) (x; = 61)?
-t /. 26,
1=1




Two-parameter estimation

In(27 6,) ~o (x; — 6;)2
lnL(xl, ....,anel, 02) = "N 2 L l 1
L, T
L=

We need to find a solution 6, 8, to
0
a—elln L(Xl, ....,xn|91, 92) =0

d
6—92 ln L(xl, .,xn|91, 62) =0



MLE estimates for mean and variance.

Normal outcomes x4, ..., x,

_________________________________________________________________

MLE estimator for
expectation

MLE estimator for
variance



MLE Recipe

1. Input Given n iid samples x4, ..., x,, from parametric model with multiple
parameters 8 = (64, 0,,.., 0})

2. Likelihood Define your likelihood function L(x4, ...., x,,| 8).
— Fordiscrete  L(xq,....,%,]0) =1}, Pr(x;;0)
— For continuous L(xq, ..., x,|0) = [Iiv; f(x;; 0)

3.Log Compute In L(x4,....,x,|0)

4. Differentiate Compute % InL(xq,....,x,,| 8)foreachi

5. Solve for O by setting derivatives to 0 and solving system of equations.

Generally, you need to verify that you’ve found a maximum, but we won’t
ask you to do that in CSE 312.



Agenda

* Properties of estimators @&
* Markov chains



When is an estimator good? Parameter

estimate
“The model”
Distributi les X X -~
iIstribution Samp €S X4, ...,4p q A
b@l8) | fromp(x|6) Algorithm 0,

6 = unknown parameter

_____________________________________________________________________________________________________________________________________________________________________

Definition. An estimator of parameter 6 is an unbiased estimator
| E(6,) = 6.

_____________________________________________________________________________________________________________________________________________________________________



Example - Consistency

Normal outcomes x;, ..., x,, iid according to N'(u, %) ~ Assume: g% > 0

_____________________________________________________________________

_______________________________ o
R X 1 2
Qu _Zl i O,z —E (Xl—@ﬂ)
n _________ i=1
Unbiased Biased!
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Consistent Estimators & MLE

Distribution
P(x|0)

6 = unknown parameter

samples X4, ..., X,
from P(x|6)

Parameter
estimate

Algorithm

_________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________________________

_____________________________________________________________________________________________________

(But not necessarily
unbiased)
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_____________________________________________________________________

0,2 is biased, but consistent. 052 = %Z(Xi -8,)°
! i=1
linearity
R / 1 n ~ , 1 n [ 1 " 27
E(@Gz)Z—ZE[(Xi—@l) ]:_ZE Xi__zX,
n 4 - i J
=1 i=1 j=1
= (1—2)02 T 102
n n
i 1 n
_ g N2
0,2 converges to g%, asn — . S2 = o Z(Xi — @u)
1=

0,2 is “consistent” S — S —
Sample variance — Unbiased!




This Photo by


https://en.wikipedia.org/wiki/Sword-billed_hummingbird
https://creativecommons.org/licenses/by-sa/3.0/

Agenda

* Properties of estimators
* Markov chains @&
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So far, a single-shot random process

Random Outcome

Process — | Distribution
D




So far, a single-shot random process

Random Outcome
Process — | Distribution
D

Many-step random process

Random
Process 1 2

Outcome
Distribution
D,

- Random

Process2—>

Outcome
Distribution
D,

- Random

Process3 =2

Outcome
Distribution
D
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So far, a single-shot random process

Random Outcome Today:
Process —» | Distribution see a very special type of DTSP
b Called a Markov Chain

Many-step random process

Random Outcome > Random Outcome > Random Outcome
Distribution Distribution Distribution
Process 1> D Process2—> D Process3 =2 5
1 % 3

Def|n|t|on A discrete-time stochastic process (DTSP) is a sequence of
random variables X, XM x@ _ where X® is the value at time t.



A day in my life
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A day in my life

y
;

Qwork>

This type of probabilistic finite automaton is called a Markov Chain

The next state depends only on the current state and not on the
history

ForANY t > 0,

if | was working at time t, then at t+1

with probability 0.4 | continue working
with probability 0.6, | switch to surfing, and
with probability o, | switch to emailing

This is called History Independent (similar to memoryless) 5



A day in my life

q&f): Pr(X (= work)

Many interesting questions.
1. What is the probability that | work at time 12

2. What is the probability that | work at time 2?

X® state ’min at time t (random variable)

qgt): Pr(X ©= surf)

q,gt): Pr(X (“= email)
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A day in my life

Many interesting questions

1. What is the probability that | work at time 12

2. What is the probability that | work at time 2?

3. What is the probability that | work at time t=100?

4. What is the probability that I’'m working at some
random time far in the future?
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A day in my life What is the probability I’'m in each state at time t, as a
function of the probability distribution over states at
time t-1

X® state ’min at time t (random variable)

gV = pr(x D= work) qtH=

qgt_l): Pr(X *~D= surf) qgt):

g V= Pr(x D= email) qH=

22



1 .6 .3

@?, q?, q?)=@ ~, " qét_l))<'4 e O)
5 0 .5

Transition Probability Matrix
4 6 0
P = (.1 .6 .3)
S5 0 5

3 g =gt p 40 = @®, ¢©, ¢
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ively.
(=1 P inducti

®) = q

Apply q

t
0) p
) — q

2 q
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The t-step walk P!

p(i()

P.’}U

»

14

S

E

]

|

W (22 6 .18
Pz = S 1.25 42 .33

w (.238 492

270
307 402 .29
335 450 .2

4 S E

W [.2940 .4413 .2648
RO~ S |.2042 4411 .2648

E

w

S
E
W
.294117647058823
.294117647068823
.294117647068823

294117647

W [.294117647
.294117647

2942 4413 2648

S
05 .44117647059
06 .44117647058
06 .44117647059

S
A441176470588235
A441176470588235
441176470588235

Recall g = q(® p?

E

.26470588235

.26470588235
.26470588235

E

.264705882352941
.264705882352941
.264705882352941

|

4 6 0

1 .6
S5 0

What does this say

about q(©)?
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Observation

If (9 = (=1 then it will never change again!

Called a “stationary distribution” and has a special name

T = (T, T, )

Solution to 1T T P
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