
CSE 312

Foundations of Computing II
Lecture 24: Wrap up discussion of estimators, Markov chains
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MLE Recipe
1. Input Given 𝑛 iid samples 𝑥!, … , 𝑥" from parametric model with 
parameter 𝜃.
2. Likelihood Define your likelihood ℒ 𝑥!, … . , 𝑥" 𝜃 .

– For discrete ℒ 𝑥!, … . , 𝑥" 𝜃 = ∏#$!
" Pr 𝑥# ; 𝜃

– For continuous ℒ 𝑥!, … . , 𝑥" 𝜃 = ∏#$!
" 𝑓 𝑥# ; 𝜃

3. Log  Compute ln ℒ 𝑥!, … . , 𝑥" 𝜃
4. Differentiate Compute #

#$
ln ℒ 𝑥!, … . , 𝑥" 𝜃

5. Solve for *𝜃 by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a 
maximum, but we won’t ask you to do that in CSE 312.
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𝑛 samples 𝑥!, … , 𝑥" ∈ ℝ from Gaussian 𝒩(𝜇, 𝜎#). Most 
likely 𝜇 and 𝜎#? 



Two-parameter optimization
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Normal outcomes 𝑥!, … , 𝑥"
Goal: estimate 𝜃! = µ = expectation and 𝜃" = 𝜎" = variance

𝐿 𝑥!, … . , 𝑥# 𝜃!, 𝜃" =
1
2𝜋𝜃"

#

-
$%!

#

𝑒&
'!&(" #

"(#

ln 𝐿 𝑥!, … . , 𝑥# 𝜃!, 𝜃" =

= −𝑛
ln(2𝜋 𝜃")
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#
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Two-parameter estimation

ln 𝐿 𝑥!, … . , 𝑥# 𝜃!, 𝜃" = −𝑛
ln(2𝜋 𝜃")

2
−5

$%!

#
𝑥$ − 𝜃! "

2𝜃"
We need to find a solution 6𝜃!, 6𝜃" to

𝜕
𝜕𝜃!

ln 𝐿 𝑥!, … . , 𝑥# 𝜃!, 𝜃" = 0

𝜕
𝜕𝜃"

ln 𝐿 𝑥!, … . , 𝑥# 𝜃!, 𝜃" = 0
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MLE estimates for mean and variance.
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Normal outcomes 𝑥!, … , 𝑥"

6𝜃𝝈𝟐 =
1
𝑛
5
$%!

#

𝑥$ − 6𝜃*
"6𝜃* =

∑$# 𝑥$
𝑛

MLE estimator for 
expectation

MLE estimator for 
variance



MLE Recipe
1. Input Given 𝑛 iid samples 𝑥!, … , 𝑥" from parametric model with multiple 
parameters 𝜽 = (𝜃!, 𝜃%,.., 𝜃&)
2. Likelihood Define your likelihood function ℒ 𝑥!, … . , 𝑥" 𝜽 .

– For discrete ℒ 𝑥!, … . , 𝑥" 𝜽 = ∏#$!
" Pr 𝑥# ; 𝜽

– For continuous ℒ 𝑥!, … . , 𝑥" 𝜽 = ∏#$!
" 𝑓 𝑥# ; 𝜽

3. Log  Compute ln ℒ 𝑥!, … . , 𝑥" 𝜽
4. Differentiate Compute #

#$!
ln ℒ 𝑥!, … . , 𝑥" 𝜽 for each i

5. Solve for /𝜽 by setting derivatives to 0 and solving system of equations. 

Generally, you need to verify that you’ve found a maximum, but we won’t 
ask you to do that in CSE 312.
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Agenda

• Properties of estimators
• Markov chains
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When is an estimator good?
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Definition. An estimator of parameter 𝜃 is an unbiased estimator

𝔼 6𝜃# = 𝜃.

Distribution
𝑝(𝑥|𝜃)

samples 𝑋!, … , 𝑋"
from 𝑝(𝑥|𝜃) Algorithm 6𝜃#

Parameter 
estimate
“The model”

𝜃 = unknown parameter



Example – Consistency 
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Normal outcomes 𝑥!, … , 𝑥# iid according to 𝒩(𝜇, 𝜎")

=Θ4# =
1
𝑛
5
$%!

#

𝑋$ − =Θ*
"

Assume: 𝜎" > 0

Biased!

6𝜃* =
∑$# 𝑥$
𝑛

Unbiased



Consistent Estimators & MLE
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Definition. An estimator is unbiased if 𝔼 6𝜃# = 𝜃 for all 𝑛 ≥ 1.

Distribution
ℙ(𝑥|𝜃)

samples 𝑋!, … , 𝑋"
from ℙ(𝑥|𝜃) Algorithm 6𝜃#

Parameter 
estimate

𝜃 = unknown parameter

Definition. An estimator is consistent if lim
#→7

𝔼 6𝜃# = 𝜃.

Theorem. MLE estimators are consistent. (But not necessarily 
unbiased)



,Θ$' is biased, but consistent.

𝔼(=Θ4#) =
1
𝑛
5
$%!

#

𝔼 𝑋$ − =Θ!
"

linearity

=
1
𝑛
5
$%!

#

𝔼 𝑋$ −
1
𝑛
5
8%!

#

𝑋8

"

= 1 −
1
𝑛
𝜎"

…

=
𝑛 − 1
𝑛

𝜎"

=Θ4# converges to 𝜎", as 𝑛 → ∞.

=Θ4# is “consistent”

𝑆#" =
1

𝑛 − 1
5
$%!

#

𝑋$ − =Θ*
"

Sample variance – Unbiased!

9Θ#! =
1
𝑛>
$%!

"

𝑋$ − 9Θ&
'
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Agenda

• Properties of estimators
• Markov chains
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So far, a single-shot random process

Outcome
Distribution

𝐷

Random 
Process    à



So far, a single-shot random process
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Random 
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Many-step random process

Outcome
Distribution

𝐷!

Random 
Process 1 à

àRandom 
Process 2à

Outcome
Distribution

𝐷'

àRandom 
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Distribution

𝐷(
⋯



So far, a single-shot random process
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Outcome
Distribution

𝐷

Random 
Process    à

Many-step random process

Outcome
Distribution

𝐷!

Random 
Process 1 à

àRandom 
Process 2à

Outcome
Distribution

𝐷'

àRandom 
Process 3 à

Outcome
Distribution

𝐷(
⋯

Definition: A discrete-time stochastic process (DTSP) is a sequence of 
random variables 𝑋(A), 𝑋(!),𝑋("), . . . where 𝑋(B) is the value at time 𝑡.

Today: 
see a very special type of DTSP 
Called a  Markov Chain



A day in my life
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A day in my life
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This type of probabilistic finite automaton is called a Markov Chain  
The next state depends only on the current state and not on the 
history
For ANY 𝑡 ≥ 0, 
if I was working at time t, then at t+1
with probability 0.4 I continue working
with probability 0.6, I switch to surfing, and 
with probability 0, I switch to emailing 

This is called History Independent (similar to memoryless)

t = 0



A day in my life
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Many interesting questions.

1. What is the probability that I work at time 1?

2. What is the probability that I work at time 2?  

t                                           0                    1                       2

𝑞&
' = Pr(𝑋(𝒕)= work)

𝑞+
' = Pr(𝑋(𝒕)= surf)

𝑞,
' = Pr(𝑋(𝒕)= email)

𝑋(𝒕) state I’m in at time t (random variable)



A day in my life
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Many interesting questions

1. What is the probability that I work at time 1?

2. What is the probability that I work at time 2?  

3. What is the probability that I work at time t=100? 

4. What is the probability that I’m working at some 
random time far in the future?



A day in my life
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What is the probability I’m in each state at time t, as a 
function of the probability distribution over states at 
time t-1

t-1 t

𝑞&
'-! = Pr(𝑋(𝒕-𝟏)= work) 𝑞&

' =

𝑞+
'-! = Pr(𝑋(𝒕-𝟏)= surf) 𝑞+

' =

𝑞,
'-! = Pr(𝑋(𝒕-𝟏)= email) 𝑞,

' =

𝑋(𝒕) state I’m in at time t (random variable)



Transition Probability Matrix
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.4 .6 0

.1 .6 .3

.5 0 .5

𝑞C
B , 𝑞D

B , 𝑞E
B = (𝑞C

B&! , 𝑞D
B&! , 𝑞E

B&! )

è 𝒒(B) = 𝒒(B&!) 𝑷

𝑷 =
.4 .6 0
.1 .6 .3
.5 0 .5

𝒒(B) = (𝑞C
B , 𝑞D

B , 𝑞E
B )



Apply 𝒒(&) = 𝒒(&(!) 𝑷 inductively. 

è 𝒒(&) = 𝒒()) 𝑷&
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𝑷 =
.4 .6 0
.1 .6 .3
.5 0 .5



The t-step walk 𝑷& Recall 𝒒(&) = 𝒒()) 𝑷&
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What does this say 
about 𝒒(&)? 

𝑷 =
.4 .6 0
.1 .6 .3
.5 0 .5



Observation

If 𝑞(&) = 𝑞(&(!) then it will never change again!

Called a “stationary distribution” and has a special name 
𝝅 = (𝜋* , 𝜋+ , 𝜋,)

Solution to 𝝅 = 𝝅 𝑷
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