
CSE 312
Foundations of Computing II
Lecture 24: Wrap up discussion of estimators, Markov chains
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Slide Credit: Based on Stefano Tessaro’s slides for 312 19au 
incorporating ideas from Ryan O’Donnell, Alex Tsun, Rachel Lin, Hunter Schafer & myself 
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MLE Recipe
1. Input Given ! iid samples "!, … , "" from parametric model with 
parameter %.
2. Likelihood Define your likelihood ℒ "!, … . , "" % .

– For discrete ℒ "!, … . , "" & = ∏#$!
" Pr "# ; &

– For continuous ℒ "!, … . , "" & = ∏#$!
" , "# ; &

3. Log  Compute ln ℒ "!, … . , "" %
4. Differentiate Compute ##$ ln ℒ "!, … . , "" %
5. Solve for *% by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a 
maximum, but we won’t ask you to do that in CSE 312.
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Two-parameter optimization
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Normal outcomes "!, … , ""
Goal: estimate !! = µ = expectation and !" = $" = variance

% &!, … . , &# !!, !" = 1
2,!"

#
-
$%!

#
.&

'!&(" #
"(#

ln % &!, … . , &# !!, !" =

= −2 ln(2, !")2 −5
$%!

# &$ − !! "

2!"



Two-parameter estimation

ln % &!, … . , &# !!, !" = −2 ln(2, !")2 −5
$%!

# &$ − !! "

2!"
We need to find a solution 6!!, 6!" to

7
7!!

ln % &!, … . , &# !!, !" = 0
7
7!"

ln % &!, … . , &# !!, !" = 0
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MLE estimates for mean and variance.
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Normal outcomes "!, … , ""

6!)$ =
1
25$%!

#
&$ − 6!*

"6!* =
∑$# &$
2

MLE estimator for 
expectation

MLE estimator for 
variance

to



MLE Recipe
1. Input Given ! iid samples "!, … , "" from parametric model with multiple 
parameters , = (%!, %%,.., %&)
2. Likelihood Define your likelihood function ℒ "!, … . , "" , .

– For discrete ℒ "!, … . , "" 5 = ∏#$!
" Pr "# ; 5

– For continuous ℒ "!, … . , "" 5 = ∏#$!
" , "# ; 5

3. Log  Compute ln ℒ "!, … . , "" ,
4. Differentiate Compute ##$!

ln ℒ "!, … . , "" , for each i

5. Solve for /, by setting derivatives to 0 and solving system of equations. 

Generally, you need to verify that you’ve found a maximum, but we won’t 
ask you to do that in CSE 312.
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Agenda

• Properties of estimators
• Markov chains
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When is an estimator good?
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Definition. An estimator of parameter ! is an unbiased estimator

: 6!# = !.

Distribution
+(-|/)

samples 1!, … , 1"
from +(-|/) Algorithm 6!#

Parameter 
estimate
“The model”

% = unknown parameter
O
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Example – Consistency 
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Normal outcomes &!, … , &# iid according to ;(<, $")

=Θ4# =
1
25$%!

#
?$ − =Θ*

"

Assume: $" > 0

Biased!

6!* =
∑$# &$
2

Unbiased
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Consistent Estimators & MLE
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Definition. An estimator is unbiased if : 6!# = ! for all 2 ≥ 1.

Distribution
ℙ(-|/)

samples 1!, … , 1"
from ℙ(-|/) Algorithm 6!#

Parameter 
estimate

% = unknown parameter

Definition. An estimator is consistent if lim#→7 : 6!# = !.

Theorem. MLE estimators are consistent. (But not necessarily 
unbiased)
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,Θ$' is biased, but consistent.

:(=Θ4#) =
1
25
$%!

#
: ?$ − =Θ!

"

linearity

= 1
25$%!

#
: ?$ −

1
258%!

#
?8

"

= 1 − 1
2 $"

…

= 2 − 1
2 $"

=Θ4# converges to $", as 2 → ∞.
=Θ4# is “consistent”

F#" =
1

2 − 15
$%!

#
?$ − =Θ*

"

Sample variance – Unbiased!

9Θ#! =
1
=>$%!

"
1$ − 9Θ&

'
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Agenda

• Properties of estimators
• Markov chains
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So far, a single-shot random process
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So far, a single-shot random process
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Many-step random process
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So far, a single-shot random process
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Many-step random process

Outcome
Distribution
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Definition: A discrete-time stochastic process (DTSP) is a sequence of 
random variables ?(A), ?(!),?("), . . . where ?(B) is the value at time G.

Today: 
see a very special type of DTSP 
Called a  Markov Chain

OI



A day in my life
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A day in my life
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This type of probabilistic finite automaton is called a Markov Chain  
The next state depends only on the current state and not on the 
history
For ANY 7 ≥ 0, 
if I was working at time t, then at t+1
with probability 0.4 I continue working
with probability 0.6, I switch to surfing, and 
with probability 0, I switch to emailing 

This is called History Independent (similar to memoryless)

t = 0



A day in my life

20

Many interesting questions.

1. What is the probability that I work at time 1?

2. What is the probability that I work at time 2?  

t                                           0                    1                       2

9&' = Pr(:())= work)

9+' = Pr(:())= surf)

9,' = Pr(:())= email)

:()) state I’m in at time t (random variable)

pg
014 0.6

gift
gut0.4 94 98 0.4 9 0.1 91

0 0.6 951 9470.6 9510.6 t
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A day in my life
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Many interesting questions

1. What is the probability that I work at time 1?

2. What is the probability that I work at time 2?  

3. What is the probability that I work at time t=100? 

4. What is the probability that I’m working at some 
random time far in the future?

i



A day in my life
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What is the probability I’m in each state at time t, as a 
function of the probability distribution over states at 
time t-1

t-1 t

9&'-! = Pr(:()-.)= work) 9&' =

9+'-! = Pr(:()-.)= surf) 9+' =

9,'-! = Pr(:()-.)= email) 9,' =

:()) state I’m in at time t (random variable)

t I

qt get 9s t t atteQ
i
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Transition Probability Matrix
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.4 .6 0

.1 .6 .3

.5 0 .5
LCB , LDB , LEB = (LCB&! , LDB&! , LEB&! )

è M(B) = M(B&!) N

N =
.4 .6 0
.1 .6 .3
.5 0 .5

M(B) = (LCB , LDB , LEB )
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Apply .(&) = .(&(!) 0 inductively. 

è .(&) = .()) 0&
24

N =
.4 .6 0
.1 .6 .3
.5 0 .5



The t-step walk 0& Recall .(&) = .()) 0&
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What does this say 
about .(&)? 

N =
.4 .6 0
.1 .6 .3
.5 0 .5



Observation

If 1(&) = 1(&(!) then it will never change again!

Called a “stationary distribution” and has a special name 
2 = (3* , 3+ , 3,)

Solution to 2 = 2 0
26
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