CSE 312

Foundations of Computing II

Lecture 24: Wrap up discussion of estimators, Markov chains

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Ryan O'Donnell, Alex Tsun, Rachel Lin, Hunter Schafer & myself

- quiz ont a week from monday (Dec 6)

 hw 8 out tonight; due Friday Dec 3

 office hours over the upcoming 8 days will change.

· preview of section materials will be posted by triday

MLE Recipe

- 1. Input Given n iid samples x_1, \dots, x_n from parametric model with parameter θ .
- 2. **Likelihood** Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, ..., x_n | \theta) = \prod_{i=1}^n \Pr(x_i; \theta)$
 - For continuous $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 3. **Log** Compute $\ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 4. **Differentiate** Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. **Solve for** $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, \sigma^2)$. Most likely μ and σ^2 ?

Two-parameter optimization

Normal outcomes x_1, \dots, x_n

Goal: estimate $\theta_1 = \mu$ = expectation and $\theta_2 = \sigma^2$ = variance

$$L(x_1, ..., x_n | \theta_1, \theta_2) = \left(\frac{1}{\sqrt{2\pi\theta_2}}\right)^n \prod_{i=1}^n e^{\frac{-(x_i - \theta_1)^2}{2\theta_2}}$$

$$\ln L(x_1, ..., x_n | \theta_1, \theta_2) =$$

$$= -n \frac{\ln(2\pi\theta_2)}{2} - \sum_{i=1}^n \frac{(x_i - \theta_1)^2}{2\theta_2}$$

Two-parameter estimation

$$\ln L(x_1, \dots, x_n | \theta_1, \theta_2) = -n \frac{\ln(2\pi \theta_2)}{2} - \sum_{i=1}^n \frac{(x_i - \theta_1)^2}{2\theta_2}$$

We need to find a solution $\hat{\theta}_1$, $\hat{\theta}_2$ to

$$\frac{\partial}{\partial \theta_1} \ln L(x_1, \dots, x_n | \theta_1, \theta_2) = 0$$

$$\frac{\partial}{\partial \theta_2} \ln L(x_1, \dots, x_n | \theta_1, \theta_2) = 0$$

MLE estimates for mean and variance.

Normal outcomes x_1, \dots, x_n

$$\hat{\theta}_{\mu} = \frac{\sum_{i}^{n} x_{i}}{n}$$

MLE estimator for **expectation**

$$\hat{\theta}_{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\theta}_{\mu})^2$$

MLE estimator for variance

MLE Recipe

- 1. **Input** Given n iid samples $x_1, ..., x_n$ from parametric model with multiple parameters $\theta = (\theta_1, \theta_2, ..., \theta_k)$
- 2. **Likelihood** Define your likelihood function $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, \dots, x_n | \boldsymbol{\theta}) = \prod_{i=1}^n \Pr(x_i; \boldsymbol{\theta})$
 - For continuous $\mathcal{L}(x_1, \dots, x_n | \boldsymbol{\theta}) = \prod_{i=1}^n f(x_i; \boldsymbol{\theta})$
- 3. **Log** Compute $\ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 4. **Differentiate** Compute $\frac{\partial}{\partial \theta_i} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$ for each i
- 5. **Solve for** $\widehat{\theta}$ by setting derivatives to 0 and solving system of equations.

Generally, you need to verify that you've found a maximum, but we won't ask you to do that in CSE 312.

Agenda

- Properties of estimators
- Markov chains

Parameter estimate

 θ = unknown parameter

Definition. An estimator of parameter θ is an **unbiased estimator**

$$\mathbb{E}(\hat{\theta}_n) = \theta.$$

E(062) = 462

Example – Consistency

Normal outcomes $x_1, ..., x_n$ iid according to $\mathcal{N}(\mu, \sigma^2)$ Assume: $\sigma^2 > 0$

$$\hat{\theta}_{\mu} = \frac{\sum_{i}^{n} x_{i}}{n}$$

$$\widehat{\Theta}_{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (\widehat{\Theta}_{\mu})^2$$

Parameter estimate

 θ = <u>unknown</u> parameter

Definition. An estimator is **unbiased** if $\mathbb{E}(\hat{\theta}_n) = \theta$ for all $n \geq 1$.

Definition. An estimator is **consistent** if $\lim_{n\to\infty} \left(\mathbb{E}(\hat{\theta}_n) \right) = \theta$.

Theorem. MLE estimators are consistent.

(But not necessarily unbiased)

$$\widehat{\Theta}_{\sigma^2}$$
 is biased, but consistent.

$$\widehat{O}_{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \widehat{\Theta}_{\mu})^2 \left(\frac{\mathbf{X}}{\mathbf{n} - \mathbf{I}} \right)$$

linearity

$$\mathbb{E}(\widehat{\Theta}_{\sigma^2}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left(X_i - \widehat{\Theta}_1 \right)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left(X_i - \frac{1}{n} \sum_{j=1}^{n} X_j \right)^2 \right]$$
...

$$\widehat{\Theta}_{\sigma^2}$$
 converges to σ^2 , as $n \to \infty$.

$$\widehat{\Theta}_{\sigma^2}$$
 is "consistent"

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \widehat{\Theta}_{\mu})^2$$

Sample variance – Unbiased!

Agenda

- Properties of estimators
- Markov chains

So far, a single-shot random process

So far, a single-shot random process

Many-step random process

So far, a single-shot random process

Today:

see a very special type of DTSP Called a Markov Chain

Many-step random process

Definition: A **discrete-time stochastic process** (DTSP) is a sequence of random variables $X^{(0)}, X^{(1)}, X^{(2)}$, where $X^{(t)}$ is the value at time t.

17

$$t = 0$$

This type of probabilistic finite automaton is called a **Markov Chain**The next state depends only on the current state and not on the history

For ANY $t \geq 0$, if I was working at time t, then at t+1 with probability 0.4 I continue working with probability 0.6, I switch to surfing, and with probability 0, I switch to emailing

This is called History Independent (similar to memoryless)

Many interesting questions.

- 1. What is the probability that I work at time 1?
- 2. What is the probability that I work at time 2?

 $X^{(t)}$ state I'm in at time t (random variable)

•

Many interesting questions

- 1. What is the probability that I work at time 1?
- 2. What is the probability that I work at time 2?
- 3. What is the probability that I work at time t=100?
- 4. What is the probability that I'm working at some random time far in the future?

What is the probability I'm in each state at time t, as a function of the probability distribution over states at time t-1

 $X^{(t)}$ state I'm in at time t (random variable)

$$q_{w}^{(t-1)} = \Pr(X^{(t-1)} = \text{work})$$

$$q_{S}^{(t-1)} = \Pr(X^{(t-1)} = \text{surf})$$

$$q_{S}^{(t-1)} = \Pr(X^{(t-1)} = \text{email})$$

$$q_{E}^{(t-1)} = \Pr(X^{(t-1)} = \text{email})$$

$$q_{E}^{(t)} = q_{S}^{(t)} = q_$$

$$(q_w^{(t)}, q_S^{(t)}, q_E^{(t)}) = (q_w^{(t-1)}, q_S^{(t-1)}, q_E^{(t-1)}) \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix}$$

Transition Probability Matrix w S E

$$P = 5 \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix}$$

$$q^{(t)} = q^{(t-1)} P$$
 $q^{(t)} = (q_w^{(t)}, q_S^{(t)}, q_E^{(t)})$

$$q^{(t)} = (q_w^{(t)}, q_S^{(t)}, q_E^{(t)})$$

Apply
$$q^{(t)} = q^{(t-1)} P$$
 inductively.

$$P = \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix}$$

$$\Rightarrow q^{(t)} = q^{(0)} P^t$$

The t-step walk P^t

Recall
$$q^{(t)} = q^{(0)} P^t$$

$$\mathbf{P} = \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix}$$

What does this say about $q^{(t)}$?

Observation

If $q^{(t)} = q^{(t-1)}$ then it will never change again!

Called a "stationary distribution" and has a special name

$$\boldsymbol{\pi} = (\pi_W, \pi_S, \pi_E)$$

Solution to
$$\pi = \pi P$$